Research Article |
Corresponding author: Karla D. A. Soares ( karlad.soares@usp.br ) Academic editor: Peter Bartsch
© 2020 Karla D. A. Soares, Marcelo R. de Carvalho.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Soares KDA, de Carvalho MR (2020) Phylogenetic relationship of catshark species of the genus Scyliorhinus (Chondrichthyes, Carcharhiniformes, Scyliorhinidae) based on comparative morphology. Zoosystematics and Evolution 96(2): 345-395. https://doi.org/10.3897/zse.96.52420
|
The genus Scyliorhinus is part of the family Scyliorhinidae, the most diverse family of sharks and of the subfamily Scyliorhininae along with Cephaloscyllium and Poroderma. This study reviews the phylogenetic relationships of species of Scyliorhinus in the subfamily Scyliorhininae. Specimens of all Scyliorhinus species were examined as well as specimens of four of the 18 species of Cephaloscyllium, two species of Poroderma, representatives of almost all other catshark (scyliorhinid) genera and one proscylliid (Proscyllium habereri). A detailed morphological study, including external and internal morphology, morphometry and meristic data, was performed. From this study, a total of 84 morphological characters were compiled into a data matrix. Parsimony analysis was employed to generate hypotheses of phylogenetic relationships using the TNT 1.1. Proscyllium habereri was used to root the cladogram. The phylogenetic analysis, based on implied weighting (k = 3; 300 replications and 100 trees saved per replication), resulted in three equally most parsimonious cladograms with 233 steps, with a CI of 0.37 and an RI of 0.69. The monophyly of the subfamily Scyliorhininae is supported as well as of the genus Scyliorhinus, which is proposed to be the sister group of Cephaloscyllium. The phylogenetic relationships amongst Scyliorhinus species are presented for the first time.
Scyliorhinus, catsharks, Scyliorhininae, Cephaloscyllium, Poroderma, phylogeny, morphology
Contrasting hypotheses on the classification of catsharks are widespread in literature and divide opinions of many authors (e.g.
Although the paraphyly of Scyliorhinidae has been corroborated by later works (
Doubts concerning the monophyly of the genus Scyliorhinus are found in many works and focus mainly on the relationships amongst S. canicula and its congeners (
Scyliorhinus presents a unique configuration of the labial furrows comprised of the absence of an upper furrow concomitant with the presence of a narrow lower furrow (
Detailed descriptions of all Scyliorhinus species, mainly based on external morphology, neurocranium and claspers, were provided in the generic revision of
Thirty-five taxa were included as terminals in the phylogenetic analysis. Species representing the three genera assigned to the Scyliorhininae by
List of species examined (except Scyliorhinus), data available for each species and institutions where the material is deposited. Abbreviations for institutions follow
Species examined | Data available | Origin of material |
---|---|---|
Scyliorhininae | ||
Cephaloscyllium isabella | External morphology, dermal denticles, musculature, skeleton | AMNH, USNM |
C. sufflans | External morphology, dermal denticles, musculature, skeleton, clasper | SAIB |
C. umbratile | External morphology, dermal denticles, musculature, skeleton | USP |
C. variegatum | External morphology, dermal denticles, musculature, skeleton | AMS |
Poroderma africanum | External morphology, dermal denticles, musculature, skeleton, clasper | SAIAB |
P. pantherinum | External morphology, dermal denticles, musculature, skeleton, clasper | SAIAB |
Comparative taxa | ||
Apristurus longicephalus | External morphology, dermal denticles, musculature, skeleton, clasper | HUMZ |
Asymbolus rubiginosus | External morphology, dermal denticles, musculature, skeleton, clasper | AMS |
Atelomycterus fasciatus | External morphology, dermal denticles, musculature, skeleton, clasper | CSIRO, MZUSP |
Aulohalaelurus labiosus | External morphology, neurocranium, clasper | ZMH |
Cephalurus cephalus | External morphology, dermal denticles, musculature, skeleton, clasper | USNM |
Figaro boardmani | External morphology, dermal denticles, musculature, skeleton, clasper | CSIRO, MZUSP |
Galeus antillensis | External morphology, dermal denticles, musculature, skeleton, clasper | UF |
Halaelurus natalensis | External morphology, dermal denticles, musculature, skeleton, clasper | SAIAB |
Haploblepharus edwardsii | External morphology, dermal denticles, musculature, skeleton, clasper | AMNH, BMNH |
Holohalaelurus regani | External morphology, dermal denticles, musculature, skeleton, clasper | SAIAB |
Parmaturus xaniurus | External morphology, dermal denticles, musculature, skeleton, clasper | CAS |
Proscyllium habereri | External morphology, musculature, skeleton, clasper | CAS |
Schroederichthys saurisqualus | External morphology, dermal denticles, musculature, skeleton, clasper | UERJ, ZMH |
This study was based on the examination of 84 morphological characters (79 qualitative and five quantitative) that included external morphology, branchiomeric and hypobranchial cranial muscles, clasper morphology, dermal denticles and skeleton. External morphological characters were observed directly or with the aid of a stereomicroscope. Anatomical preparation was performed through manual dissections. For the examination of clasper anatomy, the left clasper was chosen to study the external morphology and the right clasper for the internal anatomy. Neurocrania and musculature of adult specimens were examined through dissection. Skin samples were taken for examination of dermal denticles from the right side of the body above the pectoral fin, below the origin of the first dorsal fin and below the insertion of the second dorsal fin. Dermal denticles were photographed using scanning electron microscopes (DSM 940 and ZEISS SIGMA VP), housed in the Departamento de Zoologia of the Universidade de São Paulo. Data of intestinal valves, tooth and vertebral counts were obtained directly from the examined specimens or taken from
Radiographs were taken in the Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo (
Terminology for neurocranium and jaws follows
Character descriptions, related to meristic data, are presented first, followed by characters of external morphology, myology, skeleton and clasper. Skeletal characters are grouped into character complexes, such as neurocranium, jaws, hyoid and gill arches and pectoral girdle. The number preceding each character in the description corresponds to its number presented in the character matrix. A brief summary of each character and its states is followed by its recovered consistency and retention indices (CI and RI, respectively) which reflect their ACCTRAN optimisations (chosen because it maximises initial homology hypotheses). Multistate qualitative characters (6, 22, 43 and 49) and quantitative characters (1–5) were analysed as ordered.
Characters were illustrated with photographs and schematic drawings made from digital photographs. Photographs were taken with a digital camera (Canon Power Shot SX610 HS). Characters and their states are indicated by arrows and numbers in the figures. Figures were digitised and edited with the aid of Adobe Photoshop CS6. Whenever a character is described in the text for a genus without a species citation, that citation refers only to the species examined in the present study and does not imply that the character is present in all congeners.
Hypotheses of phylogenetic relationships were proposed using the cladistic method formalised by
CI and RI values and synapomorphies of the various nodes were obtained from the set of equally most-parsimonious trees. Relative Bremer support was calculated for each clade using TBR and retaining suboptimal trees by seven steps. Missing entries were used to represent two different instances where characters could not be determined: (1) lack of appropriate study material; and (2) inapplicable character state. For Scyliorhinus comoroensis and S. garmani, it was not possible to extract information on internal anatomical characters (e.g. musculature, neurocranium). Adult males of the terminal taxa Cephaloscyllium isabella, C. umbratile, C. variegatum and Scyliorhinus garmani were not available for dissection and, thus, claspers were not examined for these species. Autapomorphies were not included in the phylogenetic analysis, but are detailed in the section ‘Non-informative characters’.
The section ‘Description and character analysis’ presents the description of each character, its variation within the subfamily Scyliorhininae and other taxa of Scyliorhinidae. Character optimisation and character transformations are presented in Appendices
Meristics
1 Counts of monospondylous vertebrae: minimum = 28; maximum = 54. (CI = 26; RI = 43–46).
2 Counts of diplospondylous vertebrae: minimum = 67; maximum = 131. (CI = 34; RI = 31).
3 Upper tooth row counts: minimum = 33; maximum = 110. (CI = 41; RI = 56).
4 Lower tooth row counts: minimum = 29; maximum = 102. (CI = 36; RI = 49).
Tooth row counts are presented for many species in descriptions or taxonomic reviews, but never used as a phylogenetic character. Regarding the differences between upper and lower jaws, we considered upper and lower tooth row counts as distinct characters. In Scyliorhinus spp., tooth row counts range 33 to 85, considering both jaws; S. torrei (33–42) presented the lowest values and S. capensis and S. torazame (45–81) the greatest ones. Amongst scyliorhinines, Cephaloscyllium umbratile (77–110) presented the highest values. In the outgroups, counts range from 35 to 102 with the lowest values found in Apristurus longicephalus (35–45).
5 Counts of intestinal valves: minimum = 5; maximum = 17. (CI = 37; RI = 42).
Nasoral region
6 Extension of anterior nasal flap: (0) entirely covering excurrent nasal aperture and posterior nasal flap, but not covering the upper lip; (1) partially covering excurrent nasal aperture and not covering posterior nasal flap nor upper lip; (2) entirely covering excurrent aperture, posterior nasal flap and upper lip. (ordered; CI = 29; RI = 64).
The anterior nasal flap is a triangular or subrectangular structure and is situated medial to the incurrent aperture and lateral to the excurrent one. This flap can cover partially or entirely the excurrent aperture and posterior nasal flap, which is situated on the posterior border of the excurrent aperture (
Ventral view of the head. A, Scyliorhinus canicula, MNHN 1999–1732, female, 418.5 mm TL; B, Schroederichthys saurisqualus, UERJ uncatalogued, female, 564 mm TL; C, Holohalaelurus regani, SAIAB 25717, male, 610 mm TL. anf, anterior nasal flap; llf, lower labial furrow; mrd, mesonarial crest; ulf, upper labial furrow. Scale bar: 20 mm.
7 Distance between anterior nasal flaps: (0) distant by one-half or more of the width of the flap; (1) distant by less than one-half. (CI = 33; RI = 33).
In relation to the distance between anterior nasal flaps, these are separated by one-half or more of the width of the flaps in Cephaloscyllium, Poroderma and Scyliorhinus (state 0; Figs
8 Configuration of anterior nasal flap: (0) flap consisting of a single structure; (1) flap separated into lateral and medial two portions. (CI = 33; RI = 33).
Most scyliorhinids present a single anterior nasal flap. In Poroderma, the anterior nasal flap is divided into two portions (Fig.
9 Mesonarial crest: (0) inconspicuous; (1) prominent. (CI = 50; RI = 92).
The presence of a mesonarial crest was observed and described by
Nasoral region with lifted anterior nasal flap and exposed posterior nasal flap. A, Scyliorhinus ugoi, USNM 221611, male, 432 mm TL; B, Cephaloscyllium isabella, USNM 320594, female, 390 mm TL; Poroderma pantherinum, SAIAB 34577, male, 640 mm TL. anf, anterior nasal flap; ful, flap on the upper lip margin; llf, lower labial furrow; mrd, mesonarial crest; nb, nasal barbel; pnf, posterior nasal flap; pog, postoral groove; ulf, upper labial furrow. Scale bar: 20 mm.
10 Muscular nasal barbel on anterior nasal flap: (0) absent; (1) present. (CI = 100; RI = 100).
The presence of a muscular nasal barbel is observed in Poroderma (state 1; Fig.
11 Posterior nasal flap: (0) present; (1) absent. (CI = 33; RI = 0).
A posterior nasal flap, associated with the excurrent nasal aperture, is present in all scyliorhinines, most scyliorhinids and Proscyllium (state 0; Fig.
Nasoral region with lifted anterior nasal flap and exposed posterior nasal flap. A, Scyliorhinus canicula, USNM 221470, female, 438 mm TL; B, Atelomycterus fasciatus, CSIRO H1298-7, male, 370 mm TL; C, Haploblepharus edwardsii, AMNH 40988, male, 480 mm TL. anf, anterior nasal flap; ful, flap on the upper lip margin; llf, lower labial furrow; ng, nasoral groove; pnf, posterior nasal flap; pog, postoral groove; ulf, upper labial furrow; umf, upper mesonarial flap. Scale bar: 20 mm.
12 Degree of development of posterior nasal flap: (0) corresponding to one-half of the area of the anterior nasal flap; (1) reduced and only bordering the posterior tip of the excurrent aperture. (CI = 100; RI = 100).
Scyliorhinines present a well-developed posterior nasal flap, corresponding to one-half of the area of anterior nasal flap, as do the genera Asymbolus and Halaelurus (state 0; Fig.
13 Position of the posterior nasal flap: (0) situated on the posterior border of the excurrent aperture; (1) laterally situated to the excurrent aperture. (CI = 100; RI = 100).
In relation to the position of the posterior nasal flap, Scyliorhinus canicula and S. duhamelii present a unique condition, i.e. the posterior nasal flap is anteroposteriorly elongated and laterally situated at the excurrent aperture (state 1; Fig.
14 Nasoral grooves: (0) absent; (1) present. (CI = 33; RI = 33).
A nasoral groove, which links the excurrent aperture and the mouth, is observed only in Scyliorhinus canicula and S. duhamelii, amongst scyliorhinines (state 1; Fig.
15 Upper labial furrow: (0) present; (1) absent. (CI = 33; RI = 83).
An upper labial furrow is absent in Scyliorhinus, Cephaloscyllium, Holohalaelurus and Poroderma africanum (state 1; Figs
16 Lower labial furrow: (0) present; (1) absent. (CI = 50; RI = 75).
A lower labial furrow is present in Scyliorhinus, Poroderma, Proscyllium and other scyliorhinids (state 0; Figs
17 Projected flap on the upper lip margin: (0) absent; (1) present. (CI = 50; RI = 94).
In Scyliorhinus species and Poroderma africanum, there is a projected flap on the upper lip margin that laterally covers the lower labial furrow and its external margin does not extend anteriorly (state 1; Figs
18 Configuration of labial furrows: (0) continuous and fused laterally; (1) discontinuous and upper furrow ventral to the lower one. (CI = 33; RI = 0).
In taxa, where both labial furrows are found, there is a difference concerning their configuration. In Poroderma pantherinum, these furrows are narrow and discontinuous and the posterior tip of the upper furrow is ventrally situated at the lower one (state 1; Fig.
19 Number of upper labial cartilages: (0) two; (1) one. (CI = 50; RI = 92).
20 Postoral groove: (0) absent; (1) present. (CI = 100; RI = 100).
In species of Cephaloscyllium, a postoral groove is found, consisting of a slit extending from the oral commissure by an extension of up to one-fifth of the width of the mouth (state 1; Fig.
Fins
21 Pelvic apron: (0) absent; (1) present. (CI = 33; RI = 87).
The fusion of the pelvic inner margins, known as the pelvic apron and defined by
22 Extension of pelvic apron: (0) fusion extending up to one-half the length of pelvic inner margins; (1) fusion extending up to two thirds of the length of pelvic inner margins; (2) pelvic inner margins almost entirely fused. (ordered; CI = 100; RI = 100).
Amongst the taxa presenting the pelvic apron, there is some variation in its extension. In Asymbolus and Holohalaelurus, the pelvic apron may be present only in the proximal portion of the pelvic inner margins, corresponding to less than one-half of the length of the inner margins. Species of Scyliorhinus present a more developed pelvic apron, ranging from up to two thirds of the length of the pelvic inner margins (most of species; Fig.
23 Origin of the first dorsal fin: (0) closer to the vertical line that passes through the insertion of pelvic fins; (1) closer to the vertical line that passes through the origin of pelvic fins. (CI = 33; RI = 0).
The posteriormost origin of the first dorsal fin is the main character used to diagnose the family Scyliorhinidae (
24 Origin of second dorsal fin: (0) posterior to the vertical line that passes through half-length of anal fin base; (1) anterior to the vertical line that passes through half-length of anal fin base. (CI = 25; RI = 50).
Two conditions were observed concerning the origin of the second dorsal fin: posterior (most scyliorhinids; state 0, Fig.
Dermal denticles
25 Cusplets of dermal denticles on dorsolateral body surface: (0) present; (1) absent. (CI = 33; RI = 0).
The crown of the dermal denticles on the dorsolateral surface of the body varies from ‘teardrop’ to ‘trident’ shape due to the presence or absence of cusplets lateral to the principal cusp of the crown. Cusplets are present in most scyliorhinids (state 0; Fig.
Dermal denticles above the origin of the first dorsal fin. A, Apristurus longicephalus, HUMZ 170382, male, 475 mm TL; B, Asymbolus rubiginosus, AMS I.30393-004, male, 527 mm TL; C, Atelomycterus fasciatus, CSIRO H1298-7, male, 370 mm TL; D, Cephaloscyllium sufflans, SAIAB 6242, male, 800 mm TL; E, Cephalurus cephalus, USNM 221527, female, 285 mm TL; F, Galeus antillensis, UF 77853, female, 370 mm TL; G, Halaelurus natalensis, SAIAB 26951, male, 400 mm TL; H, Haploblepharus edwardsii, AMNH 40988, male, 480 mm TL; I, Holohalaelurus regani, SAIAB 25717, male, 610 mm TL; J, Parmaturus xaniurus, CAS 232152, female, 450 mm TL; K, Poroderma africanum, SAIAB 25343, male, 920 mm TL; L, Schroederichthys saurisqualus, UERJ uncatalogued, female, 564 mm TL. Scale bar: 250 µm.
26 Extension of ectodermal pits in dorsal surface of the crown denticles: (0) extending through more than half the length of the crown; (1) restricted to anterior portion of the crown (CI = 25; RI = 50).
Ectodermal pits were observed and illustrated by
27 Median ridges on dermal denticles: (0) two ridges; (1) one ridge. (CI = 33; RI = 50).
28 Caudal crest of enlarged dermal denticles: (0) absent; (1) present. (CI = 100; RI = 50).
The presence of a caudal crest of dermal denticles distinct from the denticles on dorsolateral surfaces and situated on the upper lobe of caudal fin, is found in Figaro, Galeus, Parmaturus and some species of Apristurus (state 1; Fig.
Musculature
29 Muscle depressor palpebrae nictitantis: (0) present; (1) absent. (CI = 100; RI = 100).
The postorbital musculature is composed of three muscles: m. depressor palpebrae nictitantis, m. levator palpebrae nictitantis and m. retractor palpebrae nictitantis. These muscles are responsible for elevation and depression of the nictitating lower eyelid, which is a diagnostic character for carcharhiniforms. These muscles were found in most of the taxa examined, except in scyliorhinines, in which only the muscles levator palpebrae nictitantis and retractor palpebrae nictitantis are present (state 1; Fig.
Detail of the postorbital musculature. A, Schroederichthys maculatus, UF 65846, male, 313 mm TL; B, Poroderma africanum, AMNH 43134, male, 505 mm TL. mdp, muscle depressor palpebrae nictitantis; mlp, m. levator palpebrae nictitantis; mrp, m. retractor palpebrae nictitantis; msp, m. espiracularis, ob, orbit; sp, spiracle.
30 Insertion of the muscle coracomandibularis: (0) on the articular region of the antimeres of Meckel’s cartilage; (1) near the mid-length of the lower jaws, on their anteromedial borders. (CI = 50; RI = 0).
In most taxa examined, the m. coracomandibularis inserts on the articular region of the antimeres of Meckel’s cartilage (state 0; Fig.
Detail of the insertion region of the muscle coracomandibularis. A, Cephaloscyllium umbratile, USP uncatalogued, male, 409 mm TL; B, Haploblepharus edwardsii, AMNH 40988, male, 480 mm TL. cbm, basimandibular cartilage; cor, coracoid bar; mca, muscle coracoarcualis; mch, m. coracohyoideus; mck, Meckel's cartilage; mcm, m. coracomandibularis.
31 Insertion of the muscle coracohyoideus: (0) on the ventral surface of the basihyal cartilage; (1) on connective tissue adjacent to the basihyal cartilage. (CI = 50; RI = 0).
In most taxa examined, the muscle coracohyoideus inserts on the ventral surface of the basihyal (state 0; Fig.
Hypobranchial musculature. A, Cephaloscyllium umbratile, uncatalogued, male, 409 mm TL; B, Galeus antillensis, UF 77853, female, 370 mm TL; C, Holohalaelurus regani, SAIAB 25717, male, 610 mm TL; D, Apristurus longicephalus, HUMZ 170382, male, 475 mm TL; bh, basihyal; bhf, adjacent flap of the basihyal; ch, ceratohyal; cor, coracoid bar; mca, muscle coracoarcualis; mch, m. coracohyoideus; mcm, m. coracomandibularis; ocm, origin of the m. coracomandibularis.
32 Configuration of muscles bundles of the m. coracohyoideus: (0) juxtaposed muscle bundles; (1) separated muscle bundles. (CI = 33; RI = 60).
The presence of m. coracohyoideus composed of two distinct muscle bundles originating in the fascia of the m. coracoarcualis was observed in Proscyllium and all scyliorhinids. These bundles can be juxtaposed (most taxa examined) or separated by a distance of at least one-half the width of each bundle (Cephaloscyllium, Cephalurus and Halaelurus; state 1, Fig.
33 Origin of the muscles coracobranchialis II, III and IV: (0) on the coracoid bar; (1) on the pericardial membrane. (CI = 50; RI = 75).
In Proscyllium and some scyliorhinids, the origin of the muscles coracobranchialis II, III and IV is on the coracoid bar (Apristurus, Asymbolus, Atelomycterus, Cephaloscyllium, Figaro, Galeus, Parmaturus, Poroderma and Scyliorhinus; state 0, Fig.
Detail of muscle coracobranchialis. A, Cephaloscyllium umbratile, USP uncatalogued, male, 409 mm TL; B, Schroederichthys saurisqualus, UERJ uncatalogued, female, 564 mm TL. bbq, basibranchial; cb I–V, ceratobranchials I–V; cbb, basibranchial copula; cor, coracoid bar; hb II–III, hypobranchials II–III; mcb II–IV, muscles coracobranchialis I–IV; mpc, pericardial membrane.
The insertion of the m. coracobranchialis presents the following pattern in the taxa examined: coracobranchialis II, on the medial border of the ceratobranchial II cartilage and anterolateral border hypobranchial II; coracobranchialis III, on the medial border of the ceratobranchial III cartilage and anterolateral border of hypobranchial III; coracobranchialis IV, on the medial border of the ceratobranchial IV cartilage and anterolateral border of hypobranchial IV. Muscle coracobranchialis V presents the same pattern in the taxa examined, originating from the anterolateral borders of the coracoid bar and inserting on the medial border of ceratobranchial V and lateral border of the basibranchial copula.
Neurocranium
34 Rostral cartilages: (0) fused; (1) united only by connective tissue. (CI = 100; RI = 100).
In scyliorhinines, Atelomycterus and Aulohalaelurus, the rostrum is formed by three rostral cartilages anteriorly united only by connective tissue (state 1; Fig.
Neurocranium; dorsal view. A, Scyliorhinus ugoi, USNM 221611, male, 432 mm TL; B, Cephaloscyllium variegatum, AMS I.43762-001, female, 670 mm TL; C, Schroederichthys saurisqualus, UERJ uncatalogued, female, 564 mm TL; D, Atelomycterus fasciatus, CSIRO H1298-7, male, 370 mm TL; E, Asymbolus rubiginosus, AMS I.30393-004, male, 527 mm TL; F, Figaro boardmani, CSIRO H989-5, female, 465 mm TL; G, Apristurus longicephalus, HUMZ 170382, male, 475 mm TL. af, anterior fontanelle; asc, anterior semicircular canal; eph, epiphyseal notch; foe, external foramen of preorbital canal; ins, internasal septum; iof, infraorbital canal of the lateral line; lrc, lateral rostral cartilage; mrc, medial rostral cartilage; nc, nasal capsule; pep, preorbital process; prf, parietal fossa; psc, posterior semicircular canal; pt, pterotic process; ptp, postorbital process; sc, supraorbital crest.
35 Relation between lateral rostral cartilages and anterior fontanelle: (0) rostral cartilages distant from anterior fontanelle; (1) rostral cartilages confluent with lateral borders of anterior fontanelle. (CI = 100; RI = 100).
The distance between lateral rostral cartilages may vary, positioned medially or laterally to the lateral borders of the anterior fontanelle. In some cases, the lateral rostral cartilages are confluent with the lateral borders of the anterior fontanelle, connected to it through ridges that extend from the base of the rostral cartilages to the border of the fontanelle; this condition was observed in Apristurus, Figaro, Galeus and Parmaturus (state 1; Fig.
36 Relationship between median rostral cartilage and anterior fontanelle: (0) median rostral cartilage and anterior fontanelle separated by internasal space; (1) median rostral cartilage confluent with anterior fontanelle. (CI = 50; RI = 50).
The distance between the median rostral cartilage and anterior fontanelle varies amongst taxa examined. In scyliorhinines and other taxa examined, the median rostral cartilage and the anterior fontanelle are separated by the internasal space, distant by at least two thirds of the length of the median rostral cartilage (state 0; Fig.
37 Orientation of nasal capsules: (0) nasal capsules perpendicular to the anteroposterior axis of the neurocranium; (1) nasal capsules oblique. (CI = 50; RI = 0).
In Apristurus and Galeus, the nasal capsules are obliquely orientated to the anteroposterior axis of the neurocranium (state 1; Fig.
Neurocranium; ventral view. A, Scyliorhinus ugoi, USNM 221611, male, 432 mm TL; B, Cephaloscyllium variegatum, AMS I.43762-001, female, 670 mm TL; C, Schroederichthys saurisqualus, UERJ uncatalogued, female, 564 mm TL; D, Atelomycterus fasciatus, CSIRO H1298-7, male, 370 mm TL; E, Asymbolus rubiginosus, AMS I.30393-004, male, 527 mm TL; F, Figaro boardmani, CSIRO H989-5, female, 465 mm TL; G, Apristurus longicephalus, HUMZ 170382, male, 475 mm TL. bp, basal plate; enc, external nasal cartilage; exc, excurrent aperture; hf, hyomandibular facet; icf, internal carotid foramen; inc, incurrent aperture; lrc, lateral rostral cartilage; mrc, medial rostral cartilage; nf, nasal fontanelle; sbp, subnasal plate; sf, stapedial foramen; ss, suborbital shelf.
38 Relative position between nasal apertures: (0) incurrent aperture anterior to excurrent one; (1) nasal apertures at the same level. (CI = 50; RI = 90).
Nasal apertures may be positioned at the same level (Cephaloscyllium, Poroderma, Schroederichthys and Scyliorhinus; state 1, Fig.
39 Fusion of the external nasal cartilage to the dorsal position of the nasal capsule: (0) present; (1) absent. (CI = 50; RI = 89).
The external nasal cartilage, situated anteriorly to the nasal apertures and ventrally to the nasal capsules, may or may not be fused to the anterodorsal portion of the nasal capsules (
40 Degree of development of the subnasal plate: (0) restricted to the medial portion of the nasal capsules and ventral to the internasal septum; (1) laterally expanded and united to the lateral border of the nasal capsule. (CI = 33; RI = 0).
The subnasal plate is the ventral floor of the nasal capsules, generally associated with a cavity posteromedial to the incurrent aperture and covered by a layer of connective tissue (nasal fontanelle of
41 Epiphyseal notch: (0) absent; (1) present. (CI = 25; RI = 79).
The anterior fontanelle, the anterodorsal aperture of the neurocranium covered by a layer of connective tissue, presents different shapes amongst species and also varies between sexes (
42 Supraorbital crest: (0) present; (1) absent. (CI = 50; RI = 87.
The occurrence of a supraorbital crest on the neurocranium is widely used for identification and separation of shark genera and families. The presence of this crest is considered primitive for elasmobranchs and its absence secondary in some sharks and rays (
43 Distance between internal carotid foramina: (0) greater than the distance between internal carotid and stapedial foramina; (1) smaller than the distance between internal carotid and stapedial foramina; (2) equal to the distance between internal carotid and stapedial foramina. (ordered; CI = 20; RI = 27).
Four foramina are present on the posterior portion of the basal plate: two for the medial internal carotid arteries and two for the lateral stapedial arteries.
44 Relative size of postorbital groove: (0) groove corresponds to more than one-half the height of the hyomandibular facet; (1) groove corresponds to less than one-half the height of the hyomandibular facet. (CI = 33; RI = 0).
The postorbital groove is situated posteriorly to the orbits and ventral to the postorbital processes, limited dorsally by the opisthotic process and ventrally by the hyomandibular facet; the lateral vein of the head passes along this groove (
Neurocranium; lateral view. A, Scyliorhinus ugoi, USNM 221611, male, 432 mm TL; B, Figaro boardmani, CSIRO H989-5, female, 465 mm TL; C, Apristurus longicephalus, HUMZ 170382, male, 475 mm TL. enc, external nasal cartilage; hf, hyomandibular facet; lrc, lateral rostral cartilage; mrc, medial rostral cartilage; nc, nasal capsule; pog, postorbital groove.
45 Fenestra for the infraorbital canal of the lateral line: (0) present; (1) absent. (CI = 50; RI = 0).
The pre- and postorbital processes are laterally expanded from the neurocranial roof, as wide as or wider than the nasal capsules. In most scyliorhinids, the distal tip of the postorbital process has a large fenestra through which passes the infraorbital canal of the lateral line (
Jaws
46 Labial ridge of the quadrate process: (0) present; (1) absent. (CI = 17; RI = 17).
Detail of jaws; lighter portion of Meckel’s cartilage is less calcified portion. A, Scyliorhinus ugoi, USNM 221611, male, 432 mm TL; B, Apristurus longicephalus, HUMZ 170382, male, 475 mm TL. lrq, labial ridge of the quadrate process; mck, Meckel’s cartilage; opq, orbital process of the palatoquadrate; pq, palatoquadrate.
47 Position of the orbital processes of the palatoquadrate: (0) at the anterior one-fourth of each antimere; (1) closer to the half-length of each antimere. (CI = 100; RI = 100).
The palatoquadrate articulates to the neurocranium by ethmopalatine ligaments, which are inserted on the postorbital processes of the palatoquadrates and originate from the orbital notches; these notches are situated between the posteroventral region of the nasal capsules and the preorbital wall. Orbital processes are situated in variable positions in the dorsal border of each antimere of the palatoquadrate, delimitating the extension of palatine and quadrate processes. In most scyliorhinids, orbital processes are situated at the anterior one-fourth (state 0; Fig.
48 Degree of calcification of the medial portion of Meckel’s cartilage: (0) similar calcification throughout; (1) medial portion less calcified than the rest of Meckel’s cartilage. (CI = 100; RI = 100).
Meckel’s cartilages present distinct degrees of calcification in some scyliorhinids. In Apristurus, Cephalurus, Figaro, Galeus and Parmaturus, the medial portion of the antimeres is less calcified than the rest of the cartilage (state 1; Fig.
49 Articular region of the quadratomandibular joint of Meckel’s cartilage: (0) posterior lingual condyle situated between anterior labial condyle and facet; (1) anterior and posterior condyles forming a unit and distant from the facet; (2) posterior lingual condyle opposite to the facet. (ordered; CI = 50; RI = 60).
Detail of the articular region of the quadratomandibular joint of Meckel’s cartilage. A, Cephaloscyllium sufflans, SAIAB 6242, male, 800 mm TL; Galeus antillensis, UF 77853, female, 370 mm TL; C, Apristurus longicephalus, HUMZ 170382, male, 475 mm TL. lac, labial condyle; lic, lingual condyle; mfa, mandibular facet.
Hyoid and gill arches
50 Thyroid foramen: (0) present; (1) absent. (CI = 33; RI = 60).
The basihyal cartilage, situated ventromedially to other components of the hyoid arch, is a structure that presents variable dimensions amongst taxa. This cartilage may or may not present an opening in its anterior portion, the thyroid foramen (
51 Internal surface of the hyomandibular cartilage: (0) smooth; (1) concave. (CI = 50; RI = 0).
In Apristurus and Parmaturus, we observed a prominent concavity on the internal surface of the posterior region of the hyomandibular cartilage, close to the articular region between the ceratohyal and Meckel’s cartilages (state 1; Fig.
52 Anterior border of the basihyal cartilage: (0) not bifurcated; (1) bifurcated. (CI = 33; RI = 33).
The occurrence of a bifurcation on the anterior border of the basihyal cartilage, anterior to the thyroid foramen and not confluent with it, was observed in Atelomycterus, Halaelurus, Holohalaelurus and Schroederichthys (state 1; Fig.
53 Lateral processi rastriformis: (0) present; (1) absent. (CI = 33; RI = 60).
Processi rastriformis were observed and illustrated in Squalus acanthias by
54 Oropharyngeal denticles: (0) small and not forming rows on internal face of gill components; (1) large and forming rows on internal face of gill components. (CI = 25; RI = 25).
55 Shape of the gill pickax: (0) elongated and sling-like; (1) short and triangular. (CI = 50; RI = 80).
The fusion between the dorsal tips of gill arches IV and V, forming a unique plate known as the gill pickax (
56 Ventral extrabranchial cartilages: (0) four; (1) three. (CI = 100; RI = 100).
Ventral extrabranchial cartilages are present amongst muscle bundles of the coracobranchialis and on the posterior border of the four anteriormost gill openings. In most taxa examined, four cartilages are observed, whereas in scyliorhinines only three are present (state 1). The number of ventral extrabranchial cartilages was listed by
Pectoral skeleton
57 Medial projection of the coracoid bar: (0) present; (1) absent. (CI = 50; RI = 0).
The presence of a medial projection on the coracoid bar was observed in many orders of elasmobranchs by
Coracoid bar; ventral view. A, Scyliorhinus haeckelii, UERJ 1691, male, 522 mm TL; B, Halaelurus natalensis, SAIAB 26951, male, 400 mm TL; C, Holohalaelurus regani, SAIAB 25717, male, 610 mm TL; D, Cephalurus cephalus, USNM 221527, female, 285 mm TL. mpc, medial projection of the coracoid bar; lpc, lateral processes on pectoral girdle.
58 Degree of development of the medial projection of the coracoid bar: (0) reduced to less than twice the size of the lateral portion of the coracoid bar; (1) well developed, more than twice the size of the lateral portion of the coracoid bar. (CI = 50; RI = 90).
In taxa in which a medial projection of the coracoid bar is present, differences concerning its shape and degree of development were observed. In Asymbolus, Apristurus, Atelomycterus, Galeus, Halaelurus, Poroderma and Proscyllium, the medial projection has an anterior border that is slightly convex and not very prominent (state 0; Fig.
59 Lateral processes on pectoral girdle: (0) present; (1) absent. (CI = 25; RI = 57).
Lateral processes on the coracoid bar, medial to the articular region between pectoral girdle and fins, were observed in Cephaloscyllium, Halaelurus, Haploblepharus, Schroederichthys and Scyliorhinus (state 0; Fig.
Clasper
60 Dermal denticles on the dorsal surface of clasper glans: (0) present; (1) absent. (CI = 25; RI = 40).
Dermal denticles on the dorsal surface of clasper glans were observed in most taxa examined. In Apristurus longicephalus, Cephalurus cephalus, Halaelurus natalensis, Haploblepharus edwardsii, Parmaturus xaniurus and Proscyllium habereri, the dorsal surface is totally smooth (state 1). The absence of dermal denticles on the dorsal surface of clasper glans may be related to the degree of development of the cover rhipidion and/or the exorhipidion and the presence of an open clasper groove.
61 Distribution of dermal denticles on dorsal surface of clasper glans: (0) denticles present only on the exorhipidion; (1) denticles over all of the dorsal surface except on rhipidion and terminal dermal cover. (CI = 25; RI = 73).
Clasper; external morphology. A, Scyliorhinus boa, USNM 221563, 348 mm TL; B, Scyliorhinus canicula, BMNH 1983.8.3.1–4, 585.7 mm TL; C, Scyliorhinus duhamelii, MCZ S-63, 338.7 mm TL; D, Scyliorhinus retifer, UF 36359, 372 mm TL; E, Scyliorhinus stellaris, BMNH 1976.7.30.10, 476 mm TL; F, Scyliorhinus torazame, NSMT 50632, 427.9 mm TL. ch, clasper hooks; crh, cover rhipidion; dd, dermal denticles; en, envelope; erh, exorhipidion; hp, hypopyle; rh, rhipidion; tdc, terminal dermal cover. Modified from
62 Dermal denticles on the medial border of the exorhipidion: (0) absent; (1) present. (CI = 25; RI = 25).
63 Terminal dermal cover: (0) present; (1) absent. (CI = 50; RI = 0).
64 Extension of the terminal dermal cover: (0) restricted to the distal tip of the clasper glans; (1) extending up to one-third of clasper glans. (CI = 33; RI = 71).
Regarding its extension, the terminal dermal cover may be restricted to the distal clasper tip or it extends up to one-third of the clasper glans, covering the posterior borders of the cover rhipidion and exorhipidion. The former condition was observed in Asymbolus rubiginosus, Atelomycterus fasciatus, Aulohalaelurus labiosus, Halaelurus natalensis, Haploblepharus edwardsii, Parmaturus xaniurus, Proscyllium habereri and Schroederichthys saurisqualus, in which the terminal dermal cover only reaches the posterior borders of the exorhipidion and cover rhipidion. In scyliorhinines, Figaro boardmani, Galeus antillensis and Holohalaelurus regani, a more developed terminal dermal cover was observed (state 1; Fig.
65 Configuration of the terminal dermal cover: (0) smooth; (1) rough. (CI = 33; RI = 0).
66 Degree of development of the rhipidion: (0) well developed and presenting a prominent posterior margin; (1) reduced and consisting in a narrow strip. (CI = 25; RI = 77).
Some differences regarding the degree of development of the rhipidion were observed in taxa that have this structure (
Detail of the rhipidion. A, Scyliorhinus boa, USNM 221563, 348 mm TL; B, Scyliorhinus canicula, BMNH 1983.8.3.1–4, 585.7 mm TL. Modified from Soares & de Carvalho (2019). rd, dorsal marginal cartilage; rh, rhipidion; rv, ventral marginal cartilage; t3, accessory terminal cartilage; td, dorsal terminal cartilage; td2, dorsal terminal 2 cartilage; tv, ventral terminal cartilage; tv2, ventral terminal 2 cartilage.
67 Extension of the rhipidion: (0) extending throughout the clasper glans; (1) extending up to one-third of the clasper glans. (CI = 25; RI = 73).
The extension of the rhipidion varies, depending on the species examined. In Scyliorhinus spp. (except S. canicula, S. duhamelii and S. torazame), Cephaloscyllium sufflans, Asymbolus rubiginosus, Halaelurus natalensis, Holohalaelurus regani and Schroederichthys saurisqualus, the rhipidion extends throughout the clasper glans, reaching the posterior border of the cover rhipidion (state 0; Fig.
68 Cover rhipidion: (0) poorly developed; (1) well developed and medially expanded. (CI = 100; RI = 100).
69 Exorhipidion: (0) medially expanded; (1) poorly developed. (CI = 50; RI = 75).
The exorhipidion is a ventromedially situated flap, covering totally or partially the ventral terminal cartilage. In all species of Scyliorhinus, Cephaloscyllium sufflans, Asymbolus rubiginosus, Atelomycterus fasciatus, Aulohalaelurus labiosus, Figaro boardmani, Galeus antillensis, Halaelurus natalensis, Parmaturus xaniurus and Poroderma spp., we observed a well-developed exorhipidion totally covering the ventral terminal cartilage and extending to the end of the glans (state 0; Fig.
70 Envelope: (0) present; (1) absent. (CI = 14; RI = 54).
The envelope is a distinct projection anterior to the exorhipidion, which covers the accessory terminal cartilage, posterior border of the ventral marginal cartilage and anterior border of the ventral terminal cartilage. According to our observations, this structure is present in Scyliorhinus boa, S. cervigoni, S. haeckelii, S. retifer, S. torrei and S. ugoi (
71 Degree of development of the envelope: (0) poorly developed; (1) medially expanded. (CI = 100; RI = 100).
A well-developed envelope, projecting medially and covering the anterior border of the cover rhipidion is observed in Scyliorhinus boa and S. retifer (state 1; Fig.
72 Accessory terminal cartilage: (0) present; (1) absent. (CI = 20; RI = 60).
73 Accessory dorsal marginal cartilage: (0) present; (1) absent. (CI = 33; RI = 80).
Clasper; skeleton. A, Scyliorhinus boa, USNM 221563, 348 mm TL; B, Scyliorhinus canicula, BMNH 1983.8.3.1–4, 585.7 mm TL; C, Scyliorhinus capensis, SAIAB 27577, 863 mm TL; D, Scyliorhinus retifer, UF 36359, 372 mm TL; E, Scyliorhinus stellaris, BMNH 1976.7.30.10, 476 mm TL; F, Scyliorhinus torazame, NSMT 50632, 427.9 mm TL. end, endstyle; rd, dorsal marginal cartilage; rv, ventral marginal cartilage; t3, accessory terminal cartilage; td, dorsal terminal cartilage; td2, dorsal terminal 2 cartilage; tv, ventral terminal cartilage; tv2, ventral terminal 2 cartilage. Modified from
74 Dorsal marginal 3 cartilage: (0) absent; (1) present. (CI = 25; RI = 0).
The dorsal marginal 3 cartilage is situated dorsally and external to the accessory dorsal marginal cartilage or posterior to it. A dorsal marginal 3 cartilage is absent in scyliorhinines and most of the scyliorhinids examined (state 0). In Haploblepharus edwardsii, Halaelurus natalensis and Holohalaelurus regani, this cartilage is present and is very slender, resembling a shell dorsal to the accessory dorsal marginal cartilage (state 1).
75 Ventral marginal 2 cartilage: (0) present; (1) absent. (CI = 20; RI = 56).
The presence of a ventral marginal 2 cartilage was reported for Sphyrna by
76 Position of the ventral marginal 2 cartilage: (0) continuous to the posterior border of the ventral marginal cartilage; (1) lateral to the posterior border of the ventral marginal cartilage. (CI = 100; RI = 100).
77 Dorsal terminal 2 cartilage: (0) present; (1) absent. (CI = 33; RI = 0).
The dorsal terminal 2 cartilage was described by
78 Shape of the dorsal terminal 2 cartilage: (0) elongated and rod-like; (1) rhomboidal. (CI = 50; RI = 75).
Variations in the shape of the dorsal terminal 2 cartilage were observed amongst the taxa examined. In Proscyllium and most scyliorhinids, the dorsal terminal 2 cartilage is a rod-like structure (state 0; Fig.
79 Ventral terminal 2 cartilage: (0) present; (1) absent. (CI = 25; RI = 0).
80 Position of the ventral terminal 2 cartilage: (0) anteriorly situated and sometimes attached to the anterior tip of the ventral terminal cartilage; (1) posteriorly situated, posterior to the half-length of the ventral terminal cartilage. (CI = 50; RI = 50).
A different condition from the one described by
81 Extension of the clasper siphon: (0) extending beyond the half distance between the coracoid and cloaca; (1) shorter than the coracoid-cloaca half distance. (CI = 33; RI = 78).
Detail of the clasper siphon. A, Apristurus longicephalus, HUMZ 170382, 475 mm TL; B, Holohalaelurus regani, SAIAB 25717, 610 mm TL; C, Poroderma africanum, SAIAB 25343, 920 mm TL; D, Asymbolus rubiginosus, AMS I.30393-004, 527 mm TL; E, Halaelurus natalensis, SAIAB 26951, 400 mm TL; F, Haploblepharus edwardsii, AMNH 40988, 480 mm TL. Scale bar: 20 mm.
Colouration
82 Colour pattern composed of saddles: (0) present; (1) absent. (CI = 25; RI = 50).
The presence of transverse bands darker than the background colour over most of the body, known as ‘saddles’, is widespread amongst catsharks.
Color patterns. A, Scyliorhinus canicula, MNHN 1999–1732, female, 418.5 mm TL; B, Scyliorhinus retifer, UF 36359, male, 372 mm TL; C, Scyliorhinus torazame, NSMT 50632, male, 427.9 mm TL; D, Scyliorhinus torrei, USNM 157852, male, 285 mm TL; E, Atelomycterus fasciatus, CSIRO H1298-7, male, 370 mm TL; F, Parmaturus angelae, MZUSP 124001, female, 425 mm TL; G, Poroderma pantherinum, SAIAB 34577, male, 640 mm TL; H, Poroderma africanum, SAIAB 25343, male, 920 mm TL. Scale bar: 20 mm.
83 Dark spots: (0) present; (1) absent. (CI = 20; RI = 50).
84 Dark stripes: (0) absent; (1) present. (CI = 50; RI = 0).
A colour pattern, composed of dark stripes running in different directions, was observed in Scyliorhinus retifer (Fig.
Anterior nasal flaps in Haploblepharus
Muscle preorbitalis originating from the posterolateral wall of the nasal capsules
The muscle preorbitalis is situated anteriorly to the m. adductor mandibulae and limited posteriorly by the mandibular ramus of the nerve V (
Muscle levator hyomandibulae with undifferentiated muscle fibres
Origin of the muscle coracomandibularis on the lateral borders of the coracoid bar
The m. coracomandibularis is dorsally situated to the muscles intermandibularis and interhyoideus, consisting of a median bundle originating from the m. coracoarcualis (most taxa examined) or from the medial surface of the coracoid bar (Apristurus longicephalus; Fig.
Clasper hooks
In Scyliorhinus torazame, we observed specialised hooks in the claspers forming a row that extends from the beginning of the ventral marginal cartilage to the terminal dermal cover and running along the medial margin of the exorhipidion (Schimidt 1930;
The phylogenetic analysis of the data matrix (Appendix
Character listings for clades numbered in Figure
Monophyly of clade 1
The hypothesis of the monophyly of the Scyliorhininae is supported by eight synapomorphies, four of them proposed for the first time herein. This clade is composed of Scyliorhinus, Cephaloscyllium and Poroderma. Monophyly of the Scyliorhininae was previously proposed by Compagno (1998a), who listed loss of the depressor palpebrae nictitantis muscle and loss of the fourth ventral extrabranchial cartilage as synapomorphies for the subfamily (both corroborated herein). However, no cladistic analysis was performed by this author. Later,
Monophyly of clade 2
The monophyly of Poroderma is supported by five synapomorphies.
Poroderma africanum is characterised by the following autapomorphies:
Poroderma pantherinum is characterised by the following autapomorphy:
Monophyly of clade 3
The monophyly of the clade formed by Scyliorhinus and Cephaloscyllium is supported by seven synapomorphies.
Monophyly of clade 4
The monophyly of Cephaloscyllium is supported by the following synapomorphies:
Cephaloscyllium umbratile is hypothesised as sister group of the clade formed by the species C. isabella, C. sufflans and C. variegatum (clade 5) and characterised by the following autapomorphies:
Monophyly of clade 5
The clade, formed by species Cephaloscyllium isabella, C. sufflans and C. variegatum, is characterised by the following synapomorphy:
Cephaloscyllium isabella is hypothesised as the sister group of the clade formed by the species C. sufflans and C. variegatum (clade 6) and characterised by the following autapomorphy:
Monophyly of clade 6
This clade is formed by Cephaloscyllium sufflans and C. variegatum and is characterised by the following synapomorphy:
No unique autapomorphies were found for Cephaloscyllium variegatum. Cephaloscyllium sufflans is characterised by the following autapomorphy:
Monophyly of clade 7
The monophyly of Scyliorhinus is supported by five synapomorphies in all equally most-parsimonious trees. The genus is divided into two main clades: S. boa, S. hesperius and S. retifer (clade 8) and a clade for all remaining species.
Monophyly of clade 8
This clade is formed by the species Scyliorhinus boa, S. hesperius and S. retifer and is characterised by the following synapomorphies:
No unique autapomorphies were found in the present analysis for Scyliorhinus boa. Scyliorhinus hesperius is characterised by the following autapomorphy:
Scyliorhinus retifer
is characterised by the following autapomorphy:
Monophyly of clade 9
The monophyly of the clade, formed by S. stellaris, S. cabofriensis, S. canicula, S. capensis, S. comoroensis, S. cervigoni, S. duhamelii, S. garmani, S. haeckelii, S. meadi, S. torazame, S. torrei and S. ugoi, is supported by the following synapomorphy:
Scyliorhinus stellaris
is hypothesised as the sister group of all remaining species of Scyliorhinus (cited above) and characterised by the following autapomorphy:
In some trees:
Monophyly of clade 10
This clade is formed by S. cabofriensis, S. cervigoni, S. haeckelii and S. ugoi and characterised by the following synapomorphy:
In some trees:
Scyliorhinus cabofriensis is hypothesised as the sister group of S. haeckelii, S. cervigoni and S. ugoi, but no unique autapomorphies were found for this species.
Monophyly of clade 11
The monophyly of the clade formed by S. cervigoni, S. haeckelii and S. ugoi is supported by the following synapomorphy:
No unique autapomorphies were found in the present analysis for S. haeckelii and S. ugoi. Scyliorhinus cervigoni is characterised by the following autapomorphy:
Monophyly of clade 12
The monophyly of the clade, formed by S. canicula, S. capensis, S. comoroensis, S. duhamelii, S. garmani, S. meadi, S. torazame and S. torrei, is supported by the following synapomorphy:
Scyliorhinus comoroensis and S. meadi are hypothesised as the sister group of the remaining species. Scyliorhinus comoroensis is characterised by the following synapomorphies:
Scyliorhinus meadi is characterised by the following autapomorphy:
Monophyly of clade 13
The monophyly of the clade, formed by S. canicula, S. capensis, S. duhamelii, S. garmani, S. torazame and S. torrei, is supported by the following synapomorphy:
Scyliorhinus torrei is hypothesised as sister group of clade 14 (see below) and is characterised by the following autapomorphies:
Monophyly of clade 14
This clade is formed by S. canicula, S. capensis, S. duhamelii, S. garmani and S. torazame and is characterised by the following synapomorphy:
Scyliorhinus capensis is hypothesised as sister group of the clade 15 (see below) and is characterised by the following autapomorphies:
Monophyly of clade 15
The monophyly of the clade, formed by S. canicula, S. duhamelii, S. garmani and S. torazame, is supported by the following synapomorphies:
Scyliorhinus torazame is hypothesised as the sister group of the clade formed by S. canicula, S. duhamelii and S. garmani, but no unique autapomorphies were found for this species.
Monophyly of clade 16
The monophyly of the clade, formed by S. canicula, S. duhamelii and S. garmani, is supported by the following synapomorphies:
Scyliorhinus garmani is hypothesised as the sister group of the clade formed by S. canicula and S. duhamelii and this species is characterised by the following autapomorphy:
Monophyly of clade 17
Monophyly of the clade, formed by S. canicula and S. duhamelii, is supported by:
Scyliorhinus canicula is characterised by the following autapomorphy:
Scyliorhinus duhamelii is characterised by the following autapomorphies:
The phylogenetic relationships of species of the subfamily Scyliorhininae on the basis of morphological data and inferred from a numerical cladistic study including all Scyliorhinus species, are here presented for the first time. The monophyly of Scyliorhininae is supported by the absence of the muscle depressor palpebrae nictitantis, nasal apertures at the same level on nasal capsules, articular region of the quadratomandibular joint of Meckel’s cartilage, characterised by a posterior lingual condyle opposite to the facet, three ventral extrabranchial cartilages, terminal dermal cover extending to one-third of the clasper glans, absence of accessory dorsal marginal cartilage and clasper siphon short and restricted to the pelvic region.
Scyliorhinus is hypothesised to be the sister group of Cephaloscyllium, sharing with it the presence of only one upper labial cartilage, lateral processi rastriformis similar in size to the dermal papillae, coracoid bar with a well-developed medial projection corresponding to more than twice the size of its lateral portion, a well-developed rhipidion presenting a prominent posterior margin and extending throughout the clasper glans and the absence of the ventral marginal 2 cartilage. A closer relationship between Scyliorhinus and Cephaloscyllium was also proposed by
The monophyly of Scyliorhinus is supported by the presence of a projected flap on the upper lip margin, of a pelvic apron and an ephyseal notch at the posterior border of the anterior fontanelle on the neurocranium. The presence of a pelvic apron is observed in Scyliorhinus, Asymbolus and Holohalaelurus, being more developed and extending to at least two thirds or almost the entire length of pelvic inner margins in Scyliorhinus species. The presence of an ephyseal notch on the neurocranium of Scyliorhinus species is unique amongst scyliorhinines. The presence of a projected flap is the main character used by many authors to identify species of Scyliorhinus (
Species of Cephaloscyllium, here examined, shared the following synapomorphies: absence of an upper labial furrow, presence of a postoral groove, origin of a second dorsal fin anterior to the half-length of the anal fin, muscle bundles of muscle coracohyoideus well separated along all their extension and higher values for monospondylous vertebrae, upper and lower tooth row counts. Postoral grooves are observed in all species of Cephaloscyllium with varied extensions, but no flap or labial furrow is found in any of them (17 species are considered valid;
Clasper morphology contributed important characters that helped elucidate the phylogenetic relationships among species of Scyliorhinus and other scyliorhinines (21 characters from the clasper were included in the present analysis). Amongst the most relevant characters are the following: dermal denticles along the dorsal surface of the clasper, degree of development of the envelope, configuration of terminal dermal cover, occurrence of accessory terminal and ventral terminal 2 cartilages and shape of dorsal terminal 2 cartilage. A closer relationship between S. boa and S. retifer was proposed by Goode and Bean (1896) and
According to
Characters from the nasoral region, dermal denticles, claspers, vertebrae and intestinal counts were revealed to be extremely important to shed light on the phylogenetic relationships amongst scyliorhinines and may contribute to future phylogenetic analyses concerning scyliorhinids. A more detailed examination of the nasal flaps and labial furrows allows for the identification of differences amongst the genera Atelomycterus, Haploblepharus and Scyliorhinus and clarifies questions related to the distribution and variation of characters amongst species of Scyliorhinus (e.g. S. canicula and S. duhamelii).
Data from tooth morphology of catsharks are scarce and the only study that reported tooth characters for Scyliorhinidae is
Despite the relevance of characters associated to claspers in species identification and phylogenetic analyses, information on the internal anatomy of these organs are found only for some species and mainly in classical works about clasper morphology (
The monophyly of the subfamily Scyliorhininae is corroborated by the present study, as well as by phylogenetic analyses, based on molecular data (
The monophyly of the genus Scyliorhinus is supported here and also by
In the present study, we contribute to the understanding of the phylogenetic relationships amongst Scyliorhinus species. In recent molecular studies, only few species of Scyliorhinus were included and, therefore, little information on infrageneric relationships could be obtained (
Despite the contributions presented here for the phylogeny of Scyliorhininae, there is a great need to review the taxonomy of Cephaloscyllium, including the examination of clasper morphology in its species. Deeper considerations on the monophyly of Scyliorhinidae and the phylogenetic relationships amongst scyliorhinids and other taxa were not performed here, since additional taxa of other carcharhiniform families should be included in a broader phylogenetic analysis. Taxonomic reviews, detailed morphological studies and cladistic analyses, based on morphological and molecular data, are necessary to improve our understanding of the phylogenetic relationships amongst scyliorhinids and other carcharhiniforms.
The authors wish to acknowledge Barbara Brown (AMNH), David Catania (CAS), Rob Robbins (FLMNH), Toshio Kawai (HUMZ), Karsten Hartel and Andrew Williston (MCZ), Patrice Pruvost (MNHN), Marcelo Brito (MN/UFRJ), Alessio Datovo (MZUSP), Oliver Crimmen and Ralf Britz (BMNH), Sven Kullander (NRM), Masanori Nakae and Gento Shinohara (NSMT), Ofer Gon and Nkosinathi Mazungula (SAIAB), Albe Bosman (SAM), Ulisses Gomes and Hugo Santos (UERJ), Ricardo Rosa (UFPB), Otto Gadig (UNESP, São Vicente), José Ortiz (USAC), Lynne Parenti, Jeffrey Williams, Kris Murphy and Sandra Raredon (USNM), Peter Bartsch (ZMB), Ralf Thiel (ZMH), and Marcus Krag (ZMUC) for permission to visit the collections and examine the specimens under their care. José Ortiz (USAC) for sending photos of specimens of Scyliorhinus hesperius. Mônica de Toledo-Piza (USP), Otto Gadig (UNESP, São Vicente), Ulisses Gomes (UERJ), Alessio Datovo (MZUSP) and Rodrigo Caires for their comments and contributions on the writing of this paper. Ênio Matos and Phillip Lentitakis (IBUSP) for the SEM images and Giulia Baldaconi for the neurocranium illustrations. The first author was supported by CAPES (Código de Financiamento 001) and FAPESP (processes 2014/20316-5, 2015/21314-9, 2016/22214-0); the second author by a grant from CNPq (304615/2011-0).
List of examined material
Apristurus longicephalus. HUMZ 170382, male, 475 mm TL (Japan).
Asymbolus rubiginosus. AMS I.30393-004, male, 527 mm TL (Australia), AMS I.34899-002, female, 390 mm TL (Australia).
Atelomycterus fasciatus. CSIRO H1298-7, male, 370 mm TL (Australia), MZUSP 118095, female, 363 mm TL (western Australia).
Aulohalaelurus labiosus. ZMH 2-1989, female, 480 mm TL, male, 572 mm TL (32°S, 115°30'E).
Cephaloscyllium isabella. AMNH 59832, male, 370 mm TL (Sagami, Japan), USNM 320594, female, 390 mm TL (New Zealand); C. sufflans. SAIAB 6242, male, 800 mm TL (South Africa); C. umbratile. USP uncatalogued, male, 409 mm TL (Taiwan); C. variegatum. AMS I.43762-001, female, 670 mm TL (Australia), AMS I.24039-007, male, 235 mm TL (Australia).
Cephalurus cephalus. USNM 221527, female, 285 mm TL (15°4.30'S, 75°45'W); HUMZ 174830, male, 230 mm TL (no locality data).
Figaro boardmani. CSIRO H989-5, female, 465 mm TL (northern Australia), MZUSP 118096, male, 486 mm TL (35°55.6'S, 150°1.9'E).
Galeus antillensis. UF 77853, female, 370 mm TL, male, 385 mm TL (18°33'N, 65°25'W).
Halaelurus natalensis. SAIAB 26951, male, 400 mm TL (South Africa).
Haploblepharus edwardsii. AMNH 40988, male, 480 mm TL (6°S, 12°40'E); BMNH 1953.5.10.3, male, 720 mm TL (Cape of Good Hope, South Africa).
Holohalaelurus regani. SAIAB 25717, male, 610 mm TL (South Africa).
Parmaturus xaniurus. CAS 232152, female, 450 mm TL (California, United States).
Proscyllium habereri. CAS 57189, male, 410 mm TL (27°30'N, 121°30'E).
Poroderma africanum. SAIAB 25343, male, 920 mm TL (Cape Town, South Africa); P. pantherinum. SAIAB 34577, male, 640 mm TL (Cape Town, South Africa).
Schroederichthys saurisqualus. UERJ uncatalogued, female, 564 mm TL, male, 580 mm TL (no locality data), ZMH 106492, female, 577 mm TL (30°7'S, 47°58'W, 520 m depth).
Scyliorhinus boa. NSMT 30514, male, 179.9 mm TL (7°36'N, 52°26'W, 33 m depth); NSMT 30516A, male, 210.1 mm (7°33'N, 54°10'W); USNM 221532, male, 500 mm TL (11°09'N, 74°26'W); USNM 221562, female, 185 mm TL (15°36'N, 61°13'W); USNM 221563, male, 348 mm TL (12°17'N, 72°40'W); USNM 221564, male, 488 mm TL (17°17'N, 62°23'W).
Scyliorhinus cabofriensis. UERJ 1425, female, 319 mm TL (Cabo Frio, Rio de Janeiro, south-eastern Brazil); UERJ 1427, female, 446 mm TL (Cabo Frio, Rio de Janeiro, south-eastern Brazil), UERJ 1582, female, 415 mm TL (Cabo Frio, Rio de Janeiro, south-eastern Brazil); UERJ 1694, male, 412 mm TL (Cabo Frio, Rio de Janeiro, south-eastern Brazil); UERJ 1702, male, 468 mm TL (Cabo Frio, Rio de Janeiro, south-eastern Brazil).
Scyliorhinus canicula. BMNH 1860.4.22.36-37, male, 512 mm TL, male, 374.7 mm TL (Lisbon, Portugal); BMNH 1888.5.23.48, female, 673.9 mm TL (Kerrera, United Kingdom); BMNH 1983.8.3.1-4, male, 585.7 mm TL (Dale Roads, Pembrokeshire, United Kingdom); CAS 20612, female, 354 mm TL, female, 361 mm TL, male, 439 mm TL (Naples, Italy); MNHN 1997-0450, female, 575 mm TL (Pas-de-Calais, France, 50°1'N, 1°6'E); NRM 7550, female, 227.2 mm TL (37°57.2'N, 21°4.13'E), NRM 7551, male, 248.7 mm TL (37°57.2'N, 21°4.13'E); NRM 7552, male, 286.3 mm TL (37°57.2'N, 21°4.13'E); NRM 7553, female, 342.4 mm TL (37°57.2'N, 21°4.13'E); NRM 21745, female, 591.3 mm TL (Bohüslan, Sweden); NRM 46988, female, 662 mm TL (Skagerrak,B Sweden); NRM 49164, male, 677.4 mm TL (Skagerrak, Sweden); NRM 50183, male, 582.4 mm TL (Southern Bohüslan, Sweden); NRM 50450, female, 468.6 mm TL (Skagerrak, Sweden); USNM 221218, female, 334 mm TL, female, 399 mm TL, male, 388 mm TL, male, 383 mm TL (35°41'N, 5°13'W); USNM 221464, male, 345 mm TL, male, 403 mm TL (37°17'N, 10°29'E); USNM 221470, female, 438 mm TL (38°8'N, 10°23.30'E); USNM 221509, female, 317 mm TL, female, 687 mm TL, male, 434 mm TL, male, 419 mm TL (25°28'N, 06°29'E); USNM 221600, male, 459 mm TL, female, 254 mm TL, female, 189 mm TL (35°28'N, 6°31'E); USNM 221601, female, 229 mm TL, male, 247 mm TL (35°12.50'N, 6°33.30'E); USM 221602, female, 258 mm TL (35°09'N, 6°32.20'W); USNM 221603, male, 207 mm TL (35°12.50'N, 6°33.30'W); USNM 221604, male, 306 mm TL (35°12.50'N, 6°33.30'W); USNM 221605, female, 350 mm TL, female, 308 mm TL, male, 346 mm TL (35°41'N, 12°30'W); USNM 221615, female, 354 mm TL (37°21.30'N, 10°43'E); USNM 221616, female, 367 mm TL (37°7.30'N, 10°41'E).
Scyliorhinus capensis. BMNH 1900.11.6.18, female, 898 mm TL (Cape Town, South Africa); BMNH 1935.5.2.54, female, 558.8 mm TL (Cape Town, South Africa); CAS 31455, female, 382 mm TL (Cape of Good Hope, South Africa); SAIAB 12159, female, 224 mm TL (East London, 33°S, 27°9'E); SAIAB 26440, female, 843 mm TL (35°23'6"S, 22°4'E); SAIAB 27577, male, 863 mm TL (35°37'12"S, 15°23'42"E); SAM 38774, female, 670 mm TL, male, 686 mm TL (Eastern Cape, South Africa); SAM 38775, male, (Eastern Cape, South Africa).
Scyliorhinus cervigoni. USNM 221596, female, 251 mm (10°36'S, 13°12'E); USNM 221598, male, 333 mm TL (11°25'N, 17°21'W); USNM 221599, male, 283 mm TL (10°44'N, 17°06'W); USNM 221617, female, 337 mm TL (6°31'N, 11°29'W).
Scyliorhinus comoroensis. MNHN 1984–0701, male, 457.2 mm TL (Moroni, Comoro Islands, 400 m depth); MNHN 1991–0420, male, 175 mm TL, female, 181.5 mm TL (Madagascar, 13°45.8'S, 47°38.5'E, 430–700 m depth).
Scyliorhinus duhamelii. USNM 203744, male, 399.6 mm TL (36°57'N, 10°28'E, 64–75 m depth); USNM 221645, male, 400 mm TL (42°42.48'N, 17°58.50'E).
Scyliorhinus garmani. USNM 43749, female, 267.2 mm TL (“East Indies”, probably Philippines).
Scyliorhinus haeckelii. AC.UERJ 1420, male, 365 mm TL (Cabo Frio, Rio de Janeiro, southeastern Brazil); AC.UERJ 1421, female, 412 mm TL (Cabo Frio, Rio de Janeiro, southeastern Brazil); AC.UERJ 1422, female, 379 mm TL (Cabo Frio, Rio de Janeiro, southeastern Brazil); AC.UERJ 1423, male, 478 mm TL (no locality data); UERJ 1496.1, female, 361 mm TL (Itajaí, Santa Catarina, Southern Brasil); UERJ 1496.2, female, 367 mm TL (Itajaí, Santa Catarina, Southern Brazil); UERJ 1573, female, 297 mm TL (Paraná, Southern Brazil); UERJ 1574, female, 371 mm TL (Paraná, Southern Brazil); UERJ 1689, male, 566 mm TL (Southern Brazil); UERJ 1690, female, 467 mm TL (Southern Brazil); UERJ 1691, male, 522 mm TL (Rio de Janeiro, Southern Brazil); UERJ 1695, female, 494 mm TL (Southern Brazil); UERJ 1696, female, 451 mm TL (Southern Brazil); UERJ 1697, male, 491 mm TL (Southern Brazil); UERJ 1698, male, 454 mm TL (Southern Brazil); UERJ 1704, male, 425 mm TL (Southern Brazil); UERJ 2202, male, 444 mm TL (Southern Brazil).
Scyliorhinus hesperius. CAS 65844, male, 354 mm TL (12°35'N, 82°21'W); USNM 187688, female, 288 mm TL, female, 316 mm TL (16°45'N, 81°27'W); USNM 187728, female, 338 mm TL (14°10'N, 81°55'W); USNM 187731, male, 305 mm TL (9°N, 81°23'W); USNM 188732, female, 425 mm TL (9°03'N, 81°22'W); USNM 402344, male, 290 mm TL (12°16'N, 72°40'W); USNM 405705, male, 348 mm TL (9°N, 81°23'W).
Scyliorhinus meadi. USNM 188049, male, 267 mm TL (28°21'N, 79°51'W); USNM 188050, female, 239 mm TL, male, 175 mm TL (28°31'N, 79°51'W); USNM 188051, male, 190 mm TL (29°44'N, 80°12'W); USNM 221570, male, 180 mm TL (29°1.5'N, 79°56.5'W); USNM 221571, male, 204 mm TL (29°23'N, 79°56.5'W); USNM 221594, male, 271 mm TL (24°48'N, 79°17'W).
Scyliorhinus retifer. AMNH 19453, female, 361 mm TL (United States); MCZ 125401, female, 381 mm TL (39°58'N, 70°54'W); UF 28525, female, 500 mm TL (20°43'N, 92°25.8'W); UF 36359, male, 372 mm TL (36°30'N, 74°45'W); UF 41734, female, 500 mm TL (Gulf of Mexico, 26°N); USNM 26745, male, 340 mm TL (37°26'N, 74°19'W); USNM 84501, male, 449 mm TL, male, 318 mm TL, female, 355 mm TL, female, 291 mm TL (37°03'N, 74°31.40'W); USNM 121954, male, 443 mm TL, male, 448 mm TL (Cape Henry, Virginia); USNM 157865, female, 475 mm TL (29°10'N, 88°13'W); USNM 158480, male, 428 mm TL, male, 319 mm TL, female, 297 mm TL (34°39'N, 75°05'W); USNM 187725, male, 465 mm TL, male, 415 mm TL (38°43'N, 73°08'W); USNM 188067, female, 537 mm TL, female, 374 mm TL, female, 241 mm TL (29°03.30'N, 88°28.30'W); USNM 188069, female, 451 mm TL, male, 374 mm TL (28°57.30'N, 88°39.30'W); USNM 188073, female, 298 mm TL, male, 261 mm TL, female, 287 mm TL, male, 242 mm TL (29°11'N, 88°07'W); USNM 188074, female, 513 mm TL (29°15'N, 87°45.30'W); USNM 188075, male, 440 mm TL, male, 437 mm TL (28°54'N, 88°51'W); USNM 221469, male, 410 mm TL, male, 420 mm TL (36°54'N, 74°39'W); USNM 221579, female, 200 mm TL (29°02'N, 88°34.5'W); USNM 221580, male, 252 mm TL, male, 298 mm TL (29°30'N, 87°10'W); 221593, male, 338 mm TL, male, 308 mm TL (29°58'N, 80°8.30'W); USNM 221606, female, 476 mm TL (29°25'N, 87°22'W); USNM 221644, female, 389 mm TL, female, 277 mm TL (24°23'N, 82°42'W); USNM 371557, female, 365 mm TL (27°53'N, 85°13'W); USNM 387819, male, 412 mm TL, male, 405 mm TL (38°24.10'N, 73°26.13'W).
Scyliorhinus stellaris. NRM 8989, female, 528.3 mm TL (Sicilia, Italy); NRM 8993, female, 236.3 mm TL, female, 174.6 mm TL (Nice, France); NRM 8995, male, 342.4 mm TL (Sicilia, Italy); USNM 28461, female, 317 mm TL (Livorno, Italy); USNM 34352, male, 358 mm TL (Venice, Italy); USNM 221693, female, 483 mm TL, female, 430 mm TL (45°30'N, 13°32'E).
Scyliorhinus torazame. HUMZ 117496, male, 401.6 mm TL (Shimoda, Shizuoka Prefecture, Japan); HUMZ 39459, male, 494.4 mm TL (Hakodate, Hokkaido, Japan); HUMZ 40047, male, 381.3 mm TL, male, 382 mm TL (no locality data); HUMZ 113575, female, 352.8 mm TL (Shimoda, Shizuoka Prefecture, Japan); MCZ 35309, male, 470 mm TL, male, 480 mm TL (Japan); MCZ 61163, female, 357 mm TL, male, 324 mm TL (South Korea); NSMT 66232, male, 246.1 mm TL (Sagami-nada, Tateyama, Japan); NSMT 66387, female, 297.3 mm TL, female, 289.7 mm TL (36°30.9'N, 140°59.6'E, 250 m depth); USNM 161525, female, 423 mm TL, female, 413 mm TL (Hakodate, Japan).
Scyliorhinus torrei. CAS 65845, female, 255 mm TL (23°34'N, 79°07'W); USNM 157845, male, 283 mm TL, female, 259 mm TL (22°59'N, 79°17'W); USNM 157852, male, 285 mm TL, female, 252 mm TL, male, 289 mm TL, male, 283 mm TL, male, 285 mm TL (22°55'N, 79°27'W); USNM 187685, female, 114 mm TL, male, 145 mm TL, female, 257 mm TL (23°05'N, 78°49'W); USNM 187713, female, 215 mm TL (23°34'N, 79°07'W); USNM 187940, female, 294 mm TL (28°08'N, 77°52'W); USNM 372729, male, 277 mm TL (Playa Santa, Porto Rico).
Scyliorhinus ugoi. UERJ 1426, female, 513 mm TL (Bahia, Brazil); UERJ 1722, female, 600 mm TL (Salvador, Bahia, Brazil); UERJ 1723, female, 427 mm TL (Brazil, between Pernambuco and Northern Rio de Janeiro); UERJ 1725, male, 530 mm TL (Brazil, between Southern Bahia and Northern Rio de Janeiro); UERJ 1726, female, 597 mm TL (Brazil, between Pernambuco and Northern Rio de Janeiro); UERJ 2179, male, 415 mm TL (Southern Bahia, north-eastern Brazil); USNM 221611, male, 432 mm TL (15°22'N, 61°27'W).
Matrix summarising quantitative characters used in the phylogenetic study. 1, monospondylous vertebral counts; 2, diplospondylous vertebral counts; 3, upper tooth row counts; 4, lower tooth row counts; 5, intestinal valve counts. Absolute values and normalised ones (in parentheses) are given.
Terminal | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Proscyllium habereri | 38 | 118 | 47–62 | 49–59 | 10 |
(0.38) | (0.8) | (0.18–0.38) | (0.27–0.41) | (0.42) | |
Apristurus longicephalus | 30–33(0.08–0.19) | ? | 35–45(0.03–0.16) | 29–40(0–0.15) | 15–17(0.83–1) |
Asymbolus rubiginosus | ? | ? | 61–62(0.35–0.37) | 56–62(0.37–0.45) | ? |
Atelomycterus fasciatus | 39–46(0.42–0.69) | 110–115(0.67–0.75) | 56–73(0.30–0.52) | 50–59(0.29–0.41) | 11–13(0.5–0.67) |
Aulohalaelurus labiosus | 45–46(0.65–0.69) | 103–109(0.56–0.65) | 50–70(0.22–0.48) | 45–59(0.22–0.41) | 16(0.92) |
Cephaloscyllium isabella | 45–48(0.65–0.77) | 71–72(0.06–0.08) | 50–70(0.22–0.48) | 45–65(0.22–0.49) | ? |
C. sufflans | 49(0.77) | 75–91(0.12–0.37) | 67–84(0.44–0.66) | 67–87(0.52–0.79) | 10(0.42) |
C. umbratile | 47–54(0.73–1) | 110–131(0.67–1) | 77–110(0.57–1.00) | 71–102(0.57–1.00) | ? |
C. variegatum | 44–47(0.61–0.73) | 72–77(0.08–0.16) | 68–82(0.45–0.63) | 68–82(0.53–0.73) | ? |
Cephalurus cephalus | 28–35(0–0.27) | 67–71(0–0.06) | 54–66(0.27–0.43) | 54–68(0.34–0.53) | 5–6(0–0.08) |
Figaro boardmani | 35–38(0.27–0.38) | 105–111(0.59–0.68) | 54–57(0.27–0.31) | 54–62(0.34–0.45) | ? |
Galeus antillensis | 33–39(0.19–0.42) | ? | 56(0.30) | 52(0.31) | 6–8(0.08–0.25) |
Halaelurus natalensis | 31–33(0.11–0.19) | 92–100(0.39–0.51) | 56(0.30) | 47(0.25) | ? |
Haploblepharus edwardsii | 33–40(0.19–0.46) | 88–100(0.32–0.51) | 66–75(0.43–0.54) | 58–72(0.40–0.59) | 6–7(0.08–0.17) |
Holohalaelurus regani | 28–33(0–0.19) | 78–103(0.17–0.56) | 60–70(0.35–0.48) | 62–67(0.45–0.52) | 7(0.17) |
Parmaturus xaniurus | 38–39(0.38–0.42) | 71–108(0.06–0.64) | 67–71(0.44–0.49) | 78–82(0.67–0.73) | 7–8(0.17–0.25) |
Poroderma africanum | 42–45(0.54–0.65) | 73–92(0.07–0.39) | 45–55(0.16–0.29) | 42–49(0.18–0.27) | 9–13(0.33–0.67) |
P. pantherinum | 32–46(0.15–0.69) | 70–78(0.05–0.17) | 45–51(0.16–0.23) | 40–46(0.15–0.23) | 8–13(0.25–0.67) |
Schroederichthys saurisqualus | 35–40(0.27–0.46) | 80–129(0.20–0.96) | 53–65(0.26–0.42) | 41–56(0.16–0.37) | ? |
Scyliorhinus boa | 39–42(0.42–0.54) | 82–95(0.23–0.43) | 39–49(0.08–0.21) | 40–45(0.15–0.22) | ? |
S. cabofriensis | 37–39(0.35–0.42) | 83–85(0.25–0.28) | 45–58(0.16–0.32) | 44–50(0.20–0.29) | 6–8(0.08–0.25) |
S. canicula | 35–40(0.27–0.46) | 83–95(0.25–0.43) | 40–61(0.09–0.36) | 36–50(0.09–0.29) | 10–11(0.42–0.5) |
S. capensis | 44–46(0.61–0.69) | 78–88(0.17–0.32) | 46–76(0.17–0.56) | 48–85(0.26–0.77) | 10–11(0.42–0.5) |
S. cervigoni | 40–45(0.46–0.65) | 80–91(0.20–0.37) | 44–58(0.14–0.32) | 42–52(0.18–0.31) | ? |
S. comoroensis | 40(0.46) | 97(0.46) | 50(0.22) | 43(0.19) | ? |
S. duhamelii | 35–37(0.27–0.35) | 83–88(0.25–0.32) | 42–48(0.04–0.19) | 36–44(0.09–0.20) | 8(0.25) |
S. garmani | 48(0.77) | 83(0.25) | 46(0.17) | 44(0.20) | ? |
S. haeckelii | 36–40(0.31–0.46) | 81–87(0.21–0.31) | 48–54(0.19–0.27) | 42–53(0.18–0.33) | 6–8(0.08–0.25) |
S. hesperius | 39–42(0.42–0.54) | 85–96(0.28–0.45) | 39–49(0.08–0.21) | 38–46(0.12–0.23) | ? |
S. meadi | 46–48(0.69–0.77) | 84–90(0.26–0.35) | 46–52(0.17–0.25) | 43–50(0.19–0.29) | ? |
S. retifer | 38–42(0.38–0.54) | 84–93(0.26–0.40) | 36–55(0.04–0.29) | 34–50(0.07–0.29) | 10–11(0.42–0.5) |
S. stellaris | 43–46(0.58–0.69) | 87–89(0.31–0.34) | 40–52(0.09–0.25) | 33–50(0.05–0.29) | 13–14(0.67–0.75) |
S. torazame | 32–37(0.15–0.35) | 73–89(0.09–0.34) | 50–76(0.22–0.56) | 45–81(0.22–0.71) | 10–11(0.42 –0.5) |
S. torrei | 30–35(0.08–0.27) | 81–83(0.21–0.25) | 33–42(0–0.04) | 31–42(0.03–0.18) | 6–8(0.08–0.25) |
S. ugoi | 38–39(0.38–0.42) | 81–96(0.21–0.45) | 47–56(0.18–0.30) | 45–53(0.22–0.33) | 6–8(0.08–0.25) |
Discrete morphological characters utilised in the phylogenetic analysis. Characters numbers correspond with those in the character descriptions (see text).
Terminal taxon | 6–10 | 11–20 | 21–30 | 31–40 | 41–50 | 51–60 | 61–70 | 71–80 | 81–84 |
---|---|---|---|---|---|---|---|---|---|
Proscyllium habereri | 00000 | 0000000000 | 0?110??000 | 0000000001 | 0000010001 | 0010000011 | ?100011100 | ?00000001? | 1000 |
Apristurus longicephalus | 10000 | 1??0000000 | 0?00001000 | 1000101001 | 0001111121 | 1011000011 | ??1??1?010 | 0001000000 | 1110 |
Asymbolus rubiginosus | 00000 | 0000000000 | 1000000000 | 0000000000 | 0000000000 | 0000000010 | 0000000000 | 0000000000 | 0000 |
Atelomycterus fasciatus | 21000 | 1??1000000 | 0?00010000 | 0001000010 | 1120000000 | 0010000010 | 0000011101 | ?0011?0000 | 0000 |
Aulohalaelurus labiosus | 00000 | 1??0000000 | 0?000?00?? | ???1000010 | 01210????? | ?????0???0 | 0000011101 | ?000011?01 | 0000 |
Cephaloscyllium isabella | 00010 | 0000110?11 | 0?01011010 | 0101000110 | 0110010010 | 001011010? | ?????????? | ?????????? | ?000 |
C. sufflans | 00010 | 0000110?11 | 0?01011010 | 0101000110 | 0110010010 | 0011110100 | 1001000101 | ?0101?001? | 1000 |
C. umbratile | 00010 | 0000110?11 | 0?01011010 | 0101000110 | 0110010010 | 001011010? | ?????????? | ????????00 | ?000 |
C. variegatum | 00010 | 0000110?11 | 0?01011010 | 0101000110 | 0110010010 | 001111010? | ?????????? | ?????????? | ?000 |
Cephalurus cephalus | 10100 | 0100000000 | 0?11111000 | 0110010000 | 0021001111 | ?010000111 | ??1??1?01? | ?0001?001? | ?110 |
Figaro boardmani | 10000 | 0100000000 | 0?0000?100 | 0000100000 | 000001?100 | 00?0000010 | 0101011000 | 00001?0000 | 0000 |
Galeus antillensis | 10000 | 0100000000 | 0?00001100 | 0000101001 | 0000001101 | 00100000?0 | 0101011001 | ?0101?1?00 | 1100 |
Halaelurus natalensis | 00000 | 0000000000 | 0?00010000 | 0110000000 | 1020000000 | 0101000001 | ?100000000 | 0001001?00 | 0000 |
Haploblepharus edwardsii | 21000 | 1??1000000 | 0?00010001 | 0010010000 | 0000001011 | 0010001?01 | ??00011011 | ?010000000 | 0000 |
Holohalaelurus regani | 10000 | 0100110??0 | 1000001000 | 1010010000 | 1010011010 | 0110000010 | 1001100011 | ?1011?0000 | 1100 |
Parmaturus xaniurus | 00000 | 0100000100 | 0?1110?100 | 0000100000 | 0020001111 | 1011000011 | ??00011000 | 0000000000 | 0110 |
Poroderma africanum | 00101 | 0000101?00 | 0?0001?011 | 0001000110 | 0100010010 | 0000110000 | 0001011101 | ?110010001 | 11?1 |
P. pantherinum | 00101 | 0000010000 | 0?0001?010 | 0001000110 | 0100010010 | 0000110000 | 0101011101 | ?110010001 | 1100 |
Schroederichthys saurisqualus | 10110 | 0100000110 | 0?00111000 | 0010000110 | 1110110010 | 0100001?00 | 0001000100 | 0000000000 | 0000 |
Scyliorhinus boa | 00010 | 0000101?10 | 1100011010 | 0001000110 | 1110010010 | 0010010100 | 1001000101 | 10101?0000 | 1000 |
S. cabofriensis | 00010 | 0000101?10 | 1100011010 | 0001000110 | 1110010010 | 0010010100 | 1001111101 | ?1101?0100 | 1000 |
S. canicula | 21010 | 0011101?10 | 1200011010 | 0001000110 | 1110010010 | 0010010100 | 1001100101 | ?0101?0000 | 1000 |
S. capensis | 00010 | 0000101?10 | 1200011010 | 0001000110 | 1110010010 | 0010010100 | 0001000100 | ?0101?0100 | 1010 |
S. cervigoni | 00010 | 0000101?10 | 1100011010 | 0001000110 | 1110010010 | 0010010100 | 1001000101 | 01101?0100 | 1000 |
S. comoroensis | 00010 | 0000101?10 | 11000110?? | ?????0???? | ?????????? | ?????????0 | 1001000101 | ?1101?0000 | ?010 |
S. duhamelii | 21010 | 0011101?10 | 1200011010 | 0001000110 | 1110010010 | 0010010100 | 1001011101 | ?1101?001? | 1000 |
S. garmani | 20010 | 0000101?10 | ?000?10?? | ?????0???? | ?1???????? | ?????????? | ?????????? | ?????????? | ?000 |
S. haeckelii | 00010 | 0000101?10 | 1100011010 | 0001000110 | 1110010010 | 0010010100 | 1001000100 | 01101?0100 | 1000 |
S. hesperius | 00010 | 0000101?10 | 1100011010 | 0001000110 | 1110010010 | 0010010100 | 00???00100 | 1????????? | ?010 |
S. meadi | 00010 | 0000101?10 | 1100011010 | 0001000110 | 1110010010 | 0010010100 | 1001000101 | ?????????? | ?010 |
S. retifer | 00010 | 0000101?10 | 1100011010 | 0001000110 | 1110010010 | 0010010100 | 0001000100 | 10101?0000 | 1001 |
S. stellaris | 00010 | 0000101?10 | 1100011010 | 0001000110 | 1110010010 | 0010010100 | 1001000101 | ?1101?0000 | 1000 |
S. torazame | 00010 | 0000101?10 | 1200011010 | 0001000110 | 1110010010 | 0010010100 | 1001011101 | ?0101?0000 | 1010 |
S. torrei | 00010 | 0000101?10 | 1200011010 | 0001000110 | 1110010010 | 0010010100 | 1001000100 | 01101?0000 | 1010 |
S. ugoi | 00010 | 0000101?10 | 1100011010 | 0001000110 | 1110010010 | 0010010100 | 1001000100 | 01101?0100 | 1000 |
List of non-ambiguous synapomorphies of clades and terminal taxa based on the three most-parsimonious cladograms obtained. Synapomorphies followed by “!” appear only in some trees.
Clade 1
Char. 2: 0.52–0.66 > 0.28–0.31.
Char. 29: 0 > 1.
Char. 38: 0 > 1.
Char. 56: 0 > 1.
Char. 59: 0 > 1.
Char. 64: 0 > 1.
Char. 73: 0 > 1.
Char. 81: 0 > 1.
Clade 2
Char. 8: 0 > 1.
Char. 10: 0 > 1.
Char. 72: 0 > 1.
Char. 80: 0 > 1.
Char. 82: 0 > 1.
Clade 3
Char. 9: 0 > 1.
Char. 19: 0 > 1.
Char. 53: 0 > 1.
Char. 58: 0 > 1.
Char. 66: 1 > 0.
Char. 67: 1 > 0.
Char. 75: 0 > 1.
Clade 4
Char. 1: 0.54–0.65 > 0.73.
Char. 3: 0.23–0.35 > 0.45–0.48.
Char. 4: 0.23–0.37 > 0.49–0.53.
Char. 16: 0 > 1.
Char. 20: 0 > 1.
Char. 24: 0 > 1.
Char. 32: 0 > 1.
Clade 5
Char. 2: 0.28–0.31 > 0.13–0.17.
Clade 6
Char. 54: 0 > 1.
Clade 7
Char. 3: 0.23–0.35 > 0.21–0.22.
Char. 4: 0.23–0.37 > 0.22.
Char. 17: 0 > 1.
Char. 21: 1 > 0.
Char. 41: 0 > 1.
Clade 8
Char. 70: 1 > 0.
Char. 71: 0 > 1.
Clade 9
Char. 72: 0 > 1.
Clade 10
Char. 1: 0.54–0.58 > 0.42–0.46!
Char. 5: 0.42 > 0.25!
Char. 78: 0 > 1.
Clade 11
Char. 70: 1 > 0.
Clade 12
Char. 83: 0 > 1.
Clade 13
Char. 22: 1 > 2.
Clade 14
Char. 72: 1 > 0.
Clade 15
Char. 66: 0 > 1.
Char. 67: 0 > 1.
Clade 16
Char. 6: 0 > 2.
Char. 83: 1 > 0.
Clade 17
Char. 7: 0 > 1
Char. 13: 0 > 1.
Char. 14: 0 > 1.
C. isabella
Char. 2: 0.13–0.17 > 0.06–0.08.
C. sufflans
Char. 1: 0.73 > 0.81.
C. umbratile
Char. 2: 0.28–0.31 > 0.67–1.00.
Char. 3: 0.45–0.48 > 0.57–1.00.
Char. 4: 0.49–0.53 > 0.58–1.00.
C. variegatum
No autapomorphies.
P. africanum
Char. 17: 0 > 1.
Char. 30: 0 > 1.
Char. 84: 0 > 1.
P. pantherinum
Char. 62: 0 > 1.
S. boa
No autapomorphies.
S. cabofriensis
No autapomorphies.
S. canicula
Char. 65: 0 > 1.
S. capensis
Char. 1: 0.35–0.54 > 0.62–0.69.
Char. 4: 0.21–0.22 > 0.26–0.77.
Char. 65: 0 > 1.
Char. 78: 0 > 1.
S. cervigoni
Char. 61: 1 > 0.
S. comoroensis
Char. 3: 0.28–0.31 > 0.47.
Char. 79: 0 > 1.
S. duhamelii
Char. 5: 0.42 > 0.25.
Char. 72: 0 > 1.
S. garmani
Char. 1: 0.35–0.54 > 0.77.
S. haeckelii
No autapomorphies.
S. hesperius
Char. 83: 0 > 1.
S. meadi
Char. 1: 0.46–0.54 > 0.69–0.77.
S. retifer
Char. 84: 0 > 1.
S. stellaris
Char. 1: 0.46–0.54 > 0.58–0.69!
Char. 5: 0.42 > 0.67–0.75.
S. torazame
No autapomorphies.
S. torrei
Char. 1: 0.35–0.54 > 0.08–0.27.
Char. 3: 0.17–0.22 > 0.00–0.12.
Char. 4: 0.19–0.22 > 0.01–0.18.
Char. 5: 0.42 > 0.08–0.25.
Char. 70: 1 > 0.
S. ugoi
No autapomorphies.
List of character transformation, based on the three most-parsimonious cladograms obtained.
Char. 1 (L = 2,345)
Clade 4: 0.54–0.65 > 0.73.
Clade 7: 0.54–0.65 > 0.46–0.58.
P. pantherinum: 0.54–0.65 > 0.15–0.69.
Clade 8: 0.46–0.58 > 0.46–0.54.
C. umbratile: 0.73 > 0.73–1.00.
Clade 10: 0.46–0.58 > 0.42–0.46.
C. isabella: 0.73 > 0.65–0.77.
S. boa: 0.46–0.54 > 0.42–0.54.
S. cabofriensis: 0.42–0.46 > 0.35–0.42.
S. hesperius: 0.46–0.54 > 0.42–0.54.
S. retifer: 0.46–0.54 > 0.38–0.54.
S. stellaris: 0.46–0.58 > 0.58–0.69.
Clade 13: 0.46–0.58 > 0.35–0.54.
C. sufflans: 0.73 > 0.81.
C. variegatum: 0.73 > 0.62–0.73.
S. capensis: 0.35–0.54 > 0.15–0.35.
S. cervigoni: 0.42–0.46 > 0.46–0.65.
S. comoroensis: 0.46–0.58 > 0.46.
S. garmani: 0.35–0.54 > 0.77.
S. haeckelii: 0.42–0.46 > 0.31–0.46.
S. meadi: 0.46–0.58 > 0.69–0.77.
S. torazame: 0.35–0.54 > 0.15–0.35.
S. torrei: 0.35–0.54 > 0.08–0.27.
S. ugoi: 0.42–0.46 > 0.38–0.42.
Clade 17: 0.35–0.54 > 0.35–0.46.
S. canicula: 0.35–0.46 > 0.27–0.46.
S. duhamelii: 0.35–0.46 > 0.27–0.35.
Char. 2 (L = 1,862)
Clade 1: 0.52–0.66 > 0.28–0.31.
Clade 2: 0.28–0.31 > 0.17–0.31.
P. africanum: 0.17–0.31 > 0.09–0.39.
P. pantherinum: 0.17–0.31 > 0.05–0.17.
Clade 5: 0.28–0.31 > 0.13–0.17.
C. isabella: 0.12–0.16 > 0.23–0.43.
C. umbratile: 0.28–0.31 > 0.67–1.00.
S. boa: 0.28–0.31 > 0.23–0.44.
S. cabofriensis: 0.28–0.31 > 0.25–0.28.
S. hesperius: 0.28–0.31 > 0.28–0.45.
S. retifer: 0.28–0.31 > 0.27–0.4.
S. stellaris: 0.28–0.31 > 0.31–0.34.
Clade 13: 0.28–0.31 > 0.25–0.31.
C. sufflans: 0.13–0.17 > 0.13–0.38.
C. variegatum: 0.13–0.17 > 0.08–0.17.
S. canicula: 0.25 > 0.25–0.43.
S. capensis: 0.25 > 0.17–0.32.
S. cervigoni: 0.28–0.31 > 0.20–0.37.
S. comoroensis: 0.28–0.31 > 0.46.
S. duhamelii: 0.25–0.31 > 0.25–0.33.
S. haeckelii: 0.28–0.31 > 0.22–0.31.
S. meadi: 0.28–0.31 > 0.27–0.36.
S. torazame: 0.25–0.31 > 0.09–0.34.
S. torrei: 0.25 > 0.21–0.25.
S. ugoi: 0.28–0.31 > 0.22–0.45.
Char. 3 (L=1,205)
Clade 1: 0.30–0.35 > 0.23–0.35.
Clade 2: 0.23–0.35 > 0.23–0.29.
Clade 4: 0.23–0.35 > 0.45–0.48.
P. africanum: 0.23–0.29 > 0.16–0.23.
P. pantherinum: 0.23–0.29 > 0.16–0.29.
Clade 7: 0.23–0.35 > 0.21–0.22.
Clade 8: 0.21–0.22 > 0.21.
C. isabella: 0.455–0.48 > 0.22–0.48.
C. umbratile: 0.45–0.48 > 0.57–1.00.
S. boa: 0.21 > 0.08–0.21.
S. cabofriensis: 0.21–0.22 > 0.16–0.32.
S. hesperius: 0.21 > 0.08–0.21.
S. retifer: 0.21 > 0.04–0.29.
S. stellaris: 0.21–0.22 > 0.09–0.25.
Clade 13: 0.21–0.22 > 0.17–0.22.
C. sufflans: 0.45–0.48 > 0.44–0.66.
C. variegatum: 0.45–0.48 > 0.45–0.64.
S. capensis: 0.17–0.22 > 0.17–0.56.
S. cervigoni: 0.21–0.22 > 0.14–0.32.
S. comoroensis: 0.21–0.22 > 0.22.
S. haeckelii: 0.21–0.22 > 0.19–0.27.
S. meadi: 0.21–0.22 > 0.17–0.25.
S. torazame: 0.17–0.22 > 0.22–0.56.
S. torrei: 0.17–0.22 > 0.22–0.56.
S. ugoi: 0.22–0.25 > 0.18–0.30.
Clade 16: 0.17–0.22 > 0.17–0.19.
S. canicula: 0.17 – 0.19 > 0.09–0.36.
S. duhamelii: 0.17–0.19 > 0.12–0.19.
S. garmani: 0.17–0.19 > 0.17.
Char. 4 (L=1,464)
Clade 1: 0.29–0.37 > 0.23–0.37.
Clade 2: 0.23–0.37 > 0.23–0.27.
Clade 7: 0.23–0.37 > 0.22.
Clade 4: 0.23–0.37 > 0.49–0.53.
P. africanum: 0.23–0.27 < 0.18–0.27.
P. pantherinum: 0.23–0.27 > 0.15–0.23.
Clade 6: 0.49–0.53 > 0.52–0.53.
C. isabella: 0.49–0.53 > 0.22–0.49.
C. sufflans: 0.52–0.53 > 0.52–0.79.
C. variegatum: 0.52–0.53 > 0.53–0.73.
S. cabofriensis: 0.22–0.25 > 0.21–0.29.
S. cervigoni: 0.22 > 0.18–0.32.
S. comoroensis: 0.19–0.22 > 0.19.
S. haeckelii: 0.22 > 0.18–0.33.
S. meadi: 0.19–0.22 > 0.19–0.29.
S. torrei: 0.19–0.22 > 0.10–0.18.
S. ugoi: 0.22 > 0.22–0.33.
Clade 12: 0.22–0.25 > 0.21.
S. boa: 0.21 > 0.08–0.21.
S. hesperius: 0.21 > 0.08–0.21.
S. retifer: 0.21 > 0.04–0.29.
S. stellaris: 0.22–0.25 > 0.09–0.25.
Clade 14: 0.19–0.22 > 0.21–0.22.
S. capensis: 0.20–0.22 > 0.26–0.77.
S. torazame: 0.20–0.22 > 0.22–0.71.
Clade 16: 0.20–0.22 > 0.21.
S. canicula: 0.21 > 0.10–0.29.
S. duhamelii: 0.20 > 0.10–0.21.
Char. 5 (L=2,251)
P. africanum: 0.42 > 0.33–0.67.
P. pantherinum: 0.42 > 0.25–0.67.
C. umbratile: 0.42 > ?
Clade 10: 0.42 > 0.25.
Clade 12: 0.42 > 0.25–0.42.
S. boa: 0.42 > ?
S. hesperius: 0.42 > ?
S. retifer: 0.42 > 0.42–0.50.
S. stellaris: 0.42 > 0.67–0.75.
C. isabella: 0.42 > ?
S. cabofriensis: 0.25 > 0.8–0.25.
S. meadi: 0.25–0.42 > ?
S. comoroensis: 0.25–0.42 > ?
C. variegatum: 0.42 > ?
S. ugoi: 0.25 > 0.08–0.25.
S. haeckelii: 0.25 > 0.08–0.25.
S. cervigoni: 0.25 > ?
S. torrei: 0.25–0.42 > 0.08–0.25.
Clade 14: 0.25–0.42 > 0.42.
S. canicula: 0.42 > 0.42–0.50.
S. capensis: 0.42 > 0.42–0.50.
S. duhamelii 0.42 > 0.25.
S. garmani: 0.42 > ?
S. torazame: 0.42 > 0.42–0.50.
Char. 6 (L = 8)
Clade 16: 0 > 2.
Char. 7 (L = 3)
Clade 17: 0 > 1.
Char. 8 (L = 3)
Clade 2: 0 > 1.
Char. 9 (L = 2)
Clade 3: 0 > 1.
Char. 10 (L = 1)
Clade 2: 0 > 1.
Char. 11 (L = 3)
No transformation in Scyliorhininae.
Char. 12 (L = 2)
No transformation in Scyliorhininae.
Char. 13 (L = 1)
Clade 17: 1 > 0.
Char. 14 (L = 3).
Clade 17: 0 > 1.
Char. 15 (L = 3)
Clade 1: 0 > 01.
Clade 3: 01 > 1.
P. africanum: 01 > 1.
P. pantherinum: 01 > 0.
Char. 16 (L =2)
Clade 4: 0 > 1.
Char. 17 (L = 2)
Clade 7: 0 > 1.
P. africanum: 0 > 1.
Char. 18 (L = 3)
Clade 1: 0 > 01.
P. pantherinum: 01 > 1.
Char. 19 (L = 2)
Clade 3: 0 > 1.
Char. 20 (L = 1)
Clade 4: 0 > 1.
Char. 21 (L = 3)
Clade 7: 1 > 0.
Char. 22 (L = 2)
Clade 7: 01 > 1.
Clade 13: 1 > 2.
Char. 23 (L = 1)
No transformation in Scyliorhininae.
Char. 24 (L = 2)
Clade 4: 0 > 1.
Char. 25 (L = 2)
No transformation in Scyliorhininae.
Char. 26 (L = 3)
No transformation in Scyliorhininae.
Char. 27 (L = 1)
Clade 1: 0 > 01.
Clade 3: 01 > 1.
Char. 28 (L = 2)
No transformation in Scyliorhininae.
Char. 29 (L = 2)
Clade 1: 0 > 1.
Char. 30 (L = 2)
P. africanum: 0 > 1.
Char. 31 (L = 2)
No transformation in Scyliorhininae.
Char. 32 (L = 3)
Clade 4: 0 > 1.
Char. 33 (L = 4)
No transformation in Scyliorhininae.
Char. 34 (L = 1)
No transformation in Scyliorhininae.
Char. 35 (L = 2)
No transformation in Scyliorhininae.
Char. 36 (L = 3)
No transformation in Scyliorhininae.
Char. 37 (L = 2)
No transformation in Scyliorhininae.
Char. 38 (L = 2)
Clade 1: 01 > 1.
Char. 39 (L = 1)
No transformation in Scyliorhininae.
Char. 40 (L = 2)
No transformation in Scyliorhininae.
Char. 41 (L = 5)
Clade 7: 01 > 1.
Char. 42 (L = 1)
No transformation in Scyliorhininae.
Char. 43 (L = 7)
Clade 2: 01 > 0.
Clade 3: 01 > 1.
Char. 44 (L = 3)
No transformation in Scyliorhininae.
Char. 45 (L = 2)
No transformation in Scyliorhininae.
Char. 46 (L = 5)
Clade 1: 01 > 1.
Char. 47 (L = 1)
No transformation in Scyliorhininae.
Char. 48 (L = 1)
No transformation in Scyliorhininae.
Char. 49 (L = 4)
Clade 1: 0 > 1.
Char. 50 (L = 2)
No transformation in Scyliorhininae.
Char. 51 (L = 1)
No transformation in Scyliorhininae.
Char. 52 (L = 3)
No transformation in Scyliorhininae.
Char. 53 (L = 2)
Clade 3: 0 > 1.
Char. 54 (L = 4)
Clade 6: 0 > 1.
Char. 55 (L = 2)
Clade 1: 0 > 01.
Clade 2: 01 > 1.
Clade 4: 01 > 1.
Clade 7: 01 > 0.
Char. 56 (L = 1)
Clade 1: 0 > 1.
Char. 57 (L = 2)
No transformation in Scyliorhininae.
Char. 58 (L = 2)
Clade 3: 0 > 1.
Char. 59 (L = 4)
Clade 1: 01 > 1.
Char. 60 (L = 3)
No transformation in Scyliorhininae.
Char. 61 (L = 4)
Clade 3: 0 > 01.
Clade 8: 01 > 0.
Clade 9: 01 > 1.
Char. 62 (L = 3)
P. pantherinum: 0 > 1.
Char. 63 (L = 2)
No transformation in Scyliorhininae.
Char. 64 (L = 3)
Clade 1: 0 > 1.
Char. 65 (L = 3)
S. canicula: 0 > 1.
S. capensis: 0 > 1.
Char. 66 (L = 4)
Clade 2: 01 > 1.
Clade 3: 01 > 0.
Clade 15: 0 > 1.
Char. 67 (L = 4)
Clade 3: 01 > 0.
Clade 15: 0 > 1.
Char. 68 (L = 1)
No transformation in Scyliorhininae.
Char. 69 (L = 4)
No transformation in Scyliorhininae.
Char. 70 (L = 7)
Clade 8: 1 > 0.
Clade 11: 1 > 0.
S. torrei: 1 > 0.
Char. 71 (L = 1)
Clade 8: 0 > 1.
Char. 72 (L = 5)
Clade 2: 0 > 1.
Clade 9: 0 > 1.
Clade 14: 1 > 0.
S. duhamelii: 0 > 1.
Char. 73 (L = 3)
Clade 1: 0 > 1.
Char. 74 (L = 4)
No transformation in Scyliorhininae.
Char. 75 (L = 5)
Clade 3: 0 > 1.
Char. 76 (L = 1)
No transformation in Scyliorhininae.
Char. 77 (L = 3)
No transformation in Scyliorhininae.
Char. 78 (L = 2)
Clade 10: 0 > 1.
S. capensis: 0 > 1.
Char. 79 (L = 3)
Clade 4: 0 > 01.
S. comoroensis: 0 > 1.
C. sufflans: 01 > 1.
Char. 80 (L = 2)
Clade 2: 0 > 1.
Char. 81 (L = 4)
Clade 1: 0 > 1.
Char. 82 (L = 4)
Clade 2: 0 > 1.
Char. 83 (L = 4)
Clade 12: 0 > 1.
Clade 16: 1 > 0.
Char. 84 (L = 2)
P. africanum: 0 > 1.
S. retifer: 0 > 1.