Stenothoids living with or on other animals (Crustacea, Amphipoda)

Traudl Krapp-Schickel¹, Wim Vader²

1 Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn
2 Tromsø Museum, N-9037 Tromsø, Norway

http://zoobank.org/89B46F52-BA36-41A9-9D7F-B635CAF052C1

Corresponding author: Traudl Krapp-Schickel (traudl.krapp@uni-bonn.de)

Abstract

This paper describes new or little known species of Stenothoidae, collected from sea anemones, bivalves or hermit crabs. A key to world *Stenula* species is provided.

Key Words

Taxonomy
Amphipoda
Stenothoidae
new species
revalidated species
associations with other animals

Introduction

Associations between amphipods and other animals are probably not all that rare, but few have been recorded hitherto, mainly because collection methods earlier were too crude. With the advance of Scuba-diving, new associations are being discovered at a rapid pace. The present paper adds a few more examples from the family Stenothoidae.

Material and methods

All specimens in alcohol were studied under a Reichert and Wild M5 dissecting microscope, then drawn from preparations (dissected and stored in glycerine or Faure’s medium) under a Wild M20 microscope. The pencil drawings were partly inked by hand, and partly with the software Adobe Illustrator CS 3, using a Wacom A4 drawing board. The material is lodged at the Museums of Verona (MVR, Italy), Copenhagen (ZMUC, Denmark), Smithsonian Washington (USNM, USA), see detailed indications at the descriptions.

Abbreviations

A1, 2, antennae 1, 2; art, article; Cx, coxa; Ep, epimeral plate; Gn 1, 2, gnathopods 1, 2; Md, mandible; Mx1, 2, maxillae 1, 2; Mxp, maxilliped; P 3–7, peraeopods 3–7; U 1–3, uropods 1–3.

In this paper the following terms are applied (see also Krapp-Schickel 2011: 1–2): tooth: non-articulated pointed ectodermal structure; spine: stout, articulated structure (synonymous with “robust seta”); seta: slender, flexible articulated structure.
Systematics

Stenothoidea Boeck, 1871
Stenothoidea Boeck, 1871
Genus Stenothoe Dana, 1852

Type species. Stenothoe valida Dana, 1852

The diagnosis of this genus is summarized, it shows few eminent features: Md palp lacking totally, P 5 basis linear, P 6–7 basis widened, T laminar. The genus contains many apparently free-living species and others that are living in symbiosis with other marine invertebrates; these latter in many cases show greatly diminished sexual dimorphism.

Stenothoe species are mainly found in the Atlantic and Mediterranean, while few are living in the Pacific, in the region of Australia-New Zealand or in the Indian Ocean (Krapp-Schickel 2015). There remains the strong suspicion that e.g. members living near Australia or in the Indian Ocean are not closely related to those from the Atlantic Ocean (urosome segments tend to lose their clear articulation in the former), but as the easier visible appendages such as legs or antennae match the generic definition, plus the fact that both have lost the Md palp (most probably an independent evolution), also these species are treated in the same genus Stenothoe, for the time being. Here we have examples of these different groups:

Stenothoe bartholomea sp. n.

http://zoobank.org/54165FFC-8D4D-4299-A613-6C12FCC1147C

Figures 1–5

Vader 1983: 146 sub Stenothoe n.sp.

Holotype. female ov. 3 mm, Florida, Monroe County, Cross Key: from Bartholomea annulata (Lesueur, 1817), 4/10/1971, J. Thomas coll. Slide MVRCr 7716, 7717.

Additional material. one female front part, slide MVRCr 7718; several hundreds, same locality, same date, in alcohol, deposited at MVRCr.

Type locality. Florida, Monroe County, Cross Key.

Etymology. after the host anemone Bartholomea annulata (Lesueur, 1817), from where it was collected.

Diagnosis. Sexual dimorphism lacking. Gn 1 and Gn 2 propodus similar in shape, propodus hind margin rounded, in Gn 2 without clear palmar corner. P 6, 7 basis postero-distal corner lengthened and rounded; merus postero-distally widened and lengthened, reaching half length of carpus. U3 peduncle < ramus. T with or without submarginal spines and marginal setae.

Description.

Length 2.5 – 3 mm.

Head. Eyes round, medium. Mouthparts: Md with acute hook on the place where a palp would have inserted; molar absent, incisor and lacinia mobilis strong, spine row present. Mx 1 palp with 2 arts, Mx 2 plates sitting upon each other. Mxp IP small, OP vanishing. Antennae: A1 flagellum about 15 arts, A2 flagellum about 10 arts.

Peraeon. Gn 1 basis about 3 times as long as wide, merus triangular, distally rounded and beset with spines, nearly reaching end of carpus; carpus triangular; propodus somewhat wider and clearly longer than carpus, anteriorly beset with long setae; palm well defined by a group of spines and palmar corner. Cx 2 tongue-shaped, posteriorly excavate. Gn 2 basis 3 – 3.5 times longer than wide, rectangular; merus rectangular-trapezium-shaped, distally pointed, carpus triangular, distally with stiff short and long pectinate setae, propodus oval, posterior margin regularly rounded, palm defined by some robust spines but palmar corner lacking, with one or more small triangular elevations.

Peraeopods: Cx 3 rectangular, distal margin not much longer than proximal one. Cx 4 triangular, clearly wider than long. P 3, 4 similar, slender, dactylus longer than half propodus. P 5 basis rectolinear. P 6, 7 basis with posterior margin rounded, postero-distal lobe well developed; merus lengthened and widened, reaching about half length of carpus; propodus > carpus, dactylus > half of propodus.

Pleon. U 1 peduncle > subequal rami, all beset with a few spines. U 2 peduncle > longer than unequal rami; U 3 peduncle about 3 times as long as wide, peduncle < ramus, ramus art 1 < art 2, with few short spines.

Telson with or without pair of submarginal spines and small marginal setae.

Remarks. In Krapp-Schickel 2015 a key is offered for Stenothoe species world-wide, grouped after geographical regions. Among these species this new one is one of only two with a regularly rounded Gn 2 male propodus, lacking excavations, deep incisions or prominent elevations. The other one is S. tergestina (Nebeski, 1881), frequently found in the Mediterranean, free-living in algae.

Ecology. living with and on the sea-anemone Bartholomea annulata (Lesueur, 1817).

Stenothoe miersii (Haswell, 1879)

Figures 6, 7

Montaguea Miersii Haswell, 1879: 323, pl. 24, fig. 4.

Montaguana longicornis Haswell, 1879: 323, pl. 24, fig. 5.

Stenothoe ‘miersii.’ —J.L. Barnard 1974: 120, figs 75–76.

Stenothoe valida. —Sheard 1937: 21 (= S. miersii, but confused with other species).

not Probolium miersii. —Thomson and Chilton 1886: 150 (= S. valida).

Type locality. Port Jackson, New South Wales, Australia.
Figure 1. *Stenothoe bartholomea* sp. n. female 3 mm holotype. **A1, 2 antennae; Md mandibles from both sides; LL lower lip; Mx1, 2 maxillae 1, 2; Mxp maxilliped; Mxp’ maxilliped dactylus and propodus enlarged.**
Figure 2. *Stenothoe bartholomea* sp. n. female 3 mm holotype. **Gn 1** gnathopod 1; **Gn 1′, Gn 1 ″, Gn 1 ′′′** palm and dactylus enlarged; gnathopod 1 dactylus and propodus enlarged; **Gn 2** gnathopod 2.
Figure 3. *Stenothoe bartholomea* sp. n. female 3 mm holotype. Gn 2, Gn 2’, Gn 2” gnathopod 2 from both sides and tip of carpus + merus resp. palmar corner enlarged.
Figure 4. *Stenothoe bartholomea* sp. n. female 3 mm holotype. **P 3–4, P 6–7** peraeopod 3–4; peraeopod 6–7; **P 4', P 4''** entire leg with coxa resp. distal end of propodus **P 4** enlarged; **P 7'** distal end of propodus **P 7** enlarged.
Figure 5. *Stenothe bartholomea* sp. n. female 3 mm holotype. **Ep 1, 2, 3** epimeral plates 1–3. **U 1, 2, 3** uropod 1, 2, 3; **U 2’** uropod 2 enlarged; **U 3’, U 3’’** uropod 3 in two enlargements. **T’, T’’** telson enlarged in different positions.
Figure 6. *Stenothoe miersii* (Haswell, 1879) male 3 mm; **Gn 1, 2** gnathopod 1, 2; **Gn 1′, Gn 2′** gnathopods distally enlarged.
Figure 7. *Stenothea miersii* (Haswell, 1879) male 3 mm; P 5–7 peraeopod 5–7; U 1–3 uropod 1–3; U 3’ third uropod enlarged; Ep 3 third epimeral plate; T telson.
Material examined. 1 spec. from Bermagui (400 km S of Port Jackson, Australia), 8/6/1989, Wim Vader collected on a hermit crab in shallow water. Stored at the Australian Museum (AM xxx) Sydney.

Remarks. In Haswell (1879) two species of Montagu were described from Port Jackson, Sydney: *M. miersii*, directly followed by *M. longicornis*. It appears that the first was the female, the latter the male of the same species, belonging to the genus *Stenothoe*. J.L. Barnard (1974) described four species of *Stenothoe* from Australia. One of these he called *S.?miersii*, doubting about the synonymy, as no type material is available. Barnard’s description matches the different populations around most of the Australian coastline, also the Lizard Island specimens (Krapp-Schickel 2009: 873–875), and again the illustrations given here of a female.

Ecology. It may well be that this specimen lived among the encrusting hydroids and bryozoans growing on top of the hermit-crab-shell and thus had no direct association with the crab; it was the only *Stenothoe* specimen found among many hermit crabs.

Genera *Metopa* Boeck, 1871 and *Stenula* Barnard, 1962

Lincoln 1979 has synonymized *Stenothoides latipes* Chevreux & Fage, 1925, with *Metopa rubrovittata* Sars, 1883 and transferred both to the genus *Stenula*, a genus coined by Barnard 1962.

Members of *Metopa* are mainly distributed in the Atlantic and Arctic, only very few are living outside. They can be divided into three groups by looking at their Gn 1 palmar corner:

- **L** Gn 1 locking, palmar corner 120°, propodus widened
- **SI** simple, Gn 1 palmar corner absent, propodus hind margin straight
- **N** normal, Gn 1 palmar corner 150–160°, propodus hind margin rounded

a) Atlantic Ocean and Arctic:

- *M. abyssalis* Stephensen, 1931 N
- *M. aequicornis* Sars, 1879 N
- *M. affinis* Boeck, 1871 SI/N
- *M. alderi* (Bate, 1857) N
- *M. boecki* Sars, 1892 N
- *M. borealis* Sars, 1883 SI
- *M. bruzeli* (Goës, 1866) SI
- *M. clypeata* (Kroyer, 1842) SI
- *M. cristata* Gurjanova, 1955 L
- *M. eupraxiae* Krapp-Schickel, 2009 L
- *M. gigas* Just, 2013 SI
- *M. glacialis* Kroyer, 1842 L
- *M. groenlandica* Hansen, 1888 L
- *M. hearni* Dunbar, 1954 N
- *M. invalida* Sars, 1892 SI
- *M. latimana* Hansen, 1888 N
- *M. leptocarpa* Sars, 1883 L (Md palp lacking?)
- *M. longicornis* Boeck, 1871 SI
- *M. longirama* Dunbar, 1942 SI
- *M. normani* Hoek, 1889 N
- *M. norvegica* (Liljeborg, 1851) L
- *M. palmata* Sars, 1895 SI
- *M. propinquia* Sars, 1892 SI
- *M. pusilla* Sars, 1892 SI
- *M. quadrangula* Reibisch, 1905 SI
- *M. robusta* Sars, 1892 SI
- *M. rubrovittata* Sars, 1883 N
- *M. samsiluna* J.L. Barnard, 1966 N
- *M. simula* Sars, 1892 N
- *M. solsbergi* Schneider, 1884 N
- *M. spinicosta* Shoemaker, 1955 N
- *M. submajauscula* Gurjanova, 1948 L
- *M. spitzbergensis* Brüggen, 1907 SI
- *M. tenuimana* Sars, 1892 SI
- *M. wiesei* Gurjanova, 1933 SI

b) Pacific Ocean:

- *M. abyssi* Pirlot, 1933 Pacific N
- *M. angustimana* Gurjanova, 1948 SI
- *M. bulcyhevae* Gurjanova, 1955 L
- *M. cistella* J.L. Barnard, 1969 SI
- *M. colleti* Gurjanova, 1948 L
- *M. dawsoni* J.L. Barnard, 1962 SI
- *M. exigua* Krapp-Schickel, 2009 N
- *M. japonica* Gurjanova, 1952 L
- *M. kobyakovae* Gurjanova, 1955 L
- *M. koreana* Gurjanova, 1952 SI
- *M. layi* Gurjanova, 1948 N
- *M. majuscula* Gurjanova, 1948 L
- *M. mirifica* Gurjanova, 1952 L
- *M. samsiluna* J.L. Barnard, 1966 L
- *M. timonovi* Gurjanova, 1955 L
- *M. torbeni* Krapp-Schickel, 2009 L
- *M. uschakovii* Gurjanova, 1948 N

Many authors have cited *Metopa rubrovittata*: Sars 1883: 90, 1895: 255, Reibisch 1905: 31, Chevreux and Fage 1925: 125, Stephensen 1929: 5, 1931: 189, 1938: 175, Schellenberg 1942: 120, Gurjanova 1951: 432, Old- evig 1959: 44, Moore 1984: 26. None of them gives illustrations of the mouthparts, only Lincoln 1979: 192 found a very short unarticulate mandible palp in his material from the British coasts which he then called *Stenula rubrovittata* (Sars), confirmed by Vader (see Lincoln op. cit., p. 180) for a specimen from the Norwegian west coast, but we have no information about the mouthparts of the Norwegian material called *Metopa rubrovittata* collected by Sars.

Chevreux 1900 erected a new genus *Stenothoides* for stenothoid species with present, but reduced mandibular palp. J.L. Barnard 1962 coined a new genus *Stenula* leaving the species with rectilinear basis of P 6 in *Stenothoides* and splitting those species which have P 6 basis widened (see Chevreux and Fage 1925: 130, Gurjanova 1938: 279 and 1951: 445). His diagnosis for *Stenula* is the following:
P 5 basis slender; P 6, 7 basis broad; Md palp with 1 article; Mx1 palp with 1 article.

Barnard 1962 included 10 species in Stenula: S. angusta (Shoemaker), S. arctica (Gurjanova), S. bassarginensis (Gurjanova), S. carinatus (Gurjanova), S. latipes (Chevreux & Fage) (type), S. modosa J.L. Barnard, 1962, S. ratmanovi (Gurjanova), S. serripes (Gurjanova), S. ussuriensis (Gurjanova), nota bene 7 of 10 species described by Gurjanova from the Arctic Sea.

Just 1980: 52 transferred Metopa nordmanni Stephensen, 1931 to Stenula.

In the European register of marine species Bellan-Santini and Costello 2001 cited 15 Stenula species: the ten above specified by Barnard 1962, plus S. alexanderi Tzvetkova & Golikov, 1990, S. nordmanni (Stephensen, 1931), S. peltata (where they mistakenly cited Della Valle 1893 as author instead of Smith 1874) and – following Lincoln 1979 – they placed Stenothoides latipes Chevreux & Fage, 1925 in junior synonymy with S. rubrovittata (Sars, 1892), which according to them therefore should be the actual type at the moment. We do not think this is correct, as Stenothoides latipes remains in any case the type.

S. carinatus (Gurjanova) was transferred to Metopa and renamed M. eupraxis sp. n. by Krapp-Schickel 2009b.

Thus at the beginning of this study 14 species belong to Stenula. Judging from the illustrations of the mandible in Tandberg 2011: fig. 25, M. invalida Sars, 1892 from N. Norway has to be added as 15th species. These species are mainly living in the far north region (N-Atlantic, N-Pacific, Arctic), only two of them were described by J.L. Barnard from California.

Tandberg & Vader could demonstrate in Tandberg (2011), that the character of Gn 2 palmar corner present/absent does not bring any clear results in a cladistic analysis. E.g. Metopa clypeata (the type species) or M. palmata, both with strongly rectangular palmar corner, strangely enough are not grouped together with M. alderi = M. spectabilis or M. norvegica, probably because of the strong allometry, which shows their members with very different palmar corners depending on age. It might therefore be more helpful to look at the shape of Gn 1, which shows normally much less allometry and which can be basic (the type of Stenula plus several other members of this genus and a lot of Metopa, with the carpus shorter than or equal to the propodus) or elongated (type of Metopa and some other Stenula, with Gn 1 simple and carpus, often also propodus, much lengthened and narrow).

Tandberg 2011 cites in her thesis at the beginning a letter from G.O. Sars to Sparre-Schneider, writing „I have advanced to the supposedly most difficult of all amphipod-families: Stenothoidae“. There is no doubt that there is a great difference between having a fully developed mandibular palp (Metopa) or none (Stenothoe), but the genus Stenula, as presently conceived, gathers all transitions, and is with high probability heterogeneous.

There are also various transitions within the maxillae, having two (Stenothoe) or one (Metopa, Stenula) articles in Mx1 palp, where often one cannot clearly decide if and where an articulation is present; while the Mx2 plates may sit in tandem-position (many Metopa like M. affinis, aequicornis, groenlandica, glacialis, clypeata) or riding position (in some Stenothoe and Stenula), with all steps in-between.

In three species we have no information about the mandible palp at all: S. rubrovittata, S. modosa, S. peltata. The following have a short stump, about as long as the width of the mandible-incisor: S. angusta, S. basarginensis, S. ratmanovi. All other species have a uniarticulate mandible palp which is clearly longer than the mandible-incisor: S. alexanderi, S. arctica, S. beringiensis, S. incola, S. serripes, S. ussuriensis, and also Metopa derjugini Gurjanova, 1948, which is therefore here also transferred to Stenula (see above). Just 1980: 52 looked at the mandible of Metopa nordmanni using the type specimen, and found again a uniarticulate palp longer than the mandible-incisor (also illustrated by Tzvetkova and Golikov 1990), while Shoemaker 1955: 127 found material from Point Barrow with strikingly similar legs but different antennae (A1 > A2), a two-jointed Mx1 palp and a 3-articulated mandible palp. Although he cites Metopa nordmanni Stephensen, 1931 in the synonymy-list, his species belongs to Proboloides and thus is a different animal with nearly identical body but different mouthparts, an observation which can be made rather frequently within Stenothoidae.

Stenula species could also be divided by the ratios of articles in Gn 1, having propodus subequal to carpus, or clearly much longer resp. clearly shorter. The first group is formed by the majority: S. beringiensis, S. derjugini, S. incola, S. latipes, S. modosa, S. peltata, S. ratmanovi, S. serripes; propodus is longer than carpus in S. angusta; propodus is shorter than carpus in S. arctica, S. basarginensis, S. nordmanni, S. ussuriensis and also S. alexanderi (this species is very aberrant also in the shape of Gn 1 dactylus).

It is the great help of a cladistic analysis that one can test the states of many characters together, and if a group of characters is changing together, it is more probable that a naturally related clade is found. But in the above listed species there are A1 subequal A2 or much different, Gn 1 propodus simple, rounded or with strong palmar corner, Gn 1 carpus short or extremely lengthened, Gn 2 propodus regularly rounded or deeply excavated, P 6, 7 strongly rounded or with widened but parallel margins, telson spinose or naked. And even using more than 60 characters as in the very exhaustive phylogenetic analysis of Tandberg & Vader (Tandberg 2011), there remains the big danger that the character states are not homologous. As an example, several analyses bring Stenula incola J.L. Barnard, 1969 from the intertidal of California always closely together with Stenula serripes Gurjanova, 1955: both show a one-articulate mandibular palp of medium length, Gn 2 with a well defined palmar corner, P
7 basis about as wide as long and P 7 merus very much lengthened and widened, and they are thus „very similar“ after the coded characters. But their biogeography, Gn 1 and P 6 are obviously quite different, and they are most probably not closely related at all.

At the moment there is nothing else to do than to continue „making order“ within this complicated family of Stenothoidae in describing as completely as possible its single members.

First we tried to find material of *Metopa rubrovittata* Sars from the northern North Atlantic (type loc. Christiansund and Finnmark) for comparing it with material of *Stenula latipes* (Chevreux & Fage) from the English Channel (type loc. Saint Vaast la Hougue, see Chevreux 1908: 42, 1925: 130).

Metopa rubrovittata Sars, 1883

Figures 8–9, 10B, C

Sars 1883: 90, t. 4, fig. 2, 2a; 1892: 255, pl. 89, fig. 2; Reibisch 1905: 31; Chevreux and Fage 1925: 127, fig., 125; Stephensen 1929: 5; Stephens 1931: 189; Stephensen 1938: 175; Schellenberg 1942: 120, fig. 98; Gurjanova 1951: 432, fig. 276; Oldevig 1959: 44.

Type locality. Christiansund (W Norway) and Vadsø (Finnmark)

Material examined.

–1 spec. 20/8/1971 same locality as above, ZMUC-CRU–4465.

–4 spec. North Sea without date, 4 spec., 57.266667 N 5.5 E. ZMUC-CRU–4467.

Discussion. It seemed strange that the sharp eye of Chevreux would have overlooked the synonymy between *M. rubrovittata* (cited by him in the same work Chevreux and Fage 1925: 127, fig. 125) and his newly erected *Stenothoides latipes* (loc. cit.: 129, fig. 127, 128), later transferred to *Stenula* and finally synonymized as *Stenula rubrovittata* (Sars, 1883) by Lincoln 1979. But until now really nobody had looked at the mouthparts of *M. rubrovittata*, an often cited species, which nevertheless is rarely found in Museum collections.

In fact, the studied material shows a classical mandible palp of *Metopa* species with 3 articles, though it has to be admitted that it was quite a difficult task to see always the articulations. But nevertheless, already the length of the mandible palp is very different in the material from the Channel (cf. Fig. 8 with Fig. 10B, C), thus it can be confirmed that Chevreux was right: both *Metopa rubrovittata* Sars, 1883 as well as *Stenula latipes* (Chevreux & Fage, 1925) do exist, and they show extremely similar body morphology, colour pattern and even ecological niche, only the mouthparts are somewhat different. Thus, *Metopa rubrovittata* Sars, 1892 is herewith revalidated and *Stenothoides latipes* (Chevreux & Fage, 1925) remains the type species of *Stenula*. It is not clear what the geographical distribution of the two species is, as all the numerous citations cannot be judged without examining their mandible.

For control Jean-Claude Sorbe sent us material from the Bay of Biscay, and the single specimen he had collected affirms this decision.

Stenula latipes (Chevreux & Fage, 1925)

Fig. 10A

Chevreux and Fage 1925: 130, fig. 127–129.

Type locality. Grandcamp-les-Bains (Calvados), on the shell of *Eupagurus bernhardus* (L.); very common in a dredge of 20m depth in Saint-Vaast-la-Hougue. English Channel. Chevreux and Fage 1925: 11 specified that the shell from which the amphipod was collected was *Buclium undatum* inhabited by the hermit crab.

Material examined. 1 spec. 3 mm, Survey OXYBENT 9 STN OB9–B–TS04; 43.8175 N, 2.042 W; Bay of Biscay, Capbreton Canyon; 500–510 m; 22/06/1999; coll. Sorbe.

4 spec. Denmark, Anholt (Kattegat) without date, 17,5 fathoms = 31,5 m. ZMUC-CRU–4466.

?Stenula peltata (Smith, 1872)

Figures 11–13

Smith 1872 in: Smith and Harger 1872: 29, pl. 3, fig. 5–8; Della Valle 1893: 570; Stebbing 1906: 194–195.

? synonymous to Gurjanova 1948: 310, S. ratmanovi

Type locality. St. George’s Banks, 55 m depth. Near Cultivator Shoal.

Material examined. one specimen USNM 35636, 41.5557 N, 68.1641 W, NA, 30 fathoms, sandy bottom, 29/8/1872.

As the original paper is not easily accessible and as there is some confusion about the authors, I repeat here with the type-description by Smith:

Description.

Female. Eyes round and nearly white in alcohol. Antennulae (=A1) considerably shorter than epimera of the 4th segment (Cx 4); first article of the peduncle stout, subequal to head, the second shorter, the third very short and similar to the arts of the flagellum; flagellum scarcely longer than the peduncle, with 8 arts. Antennae (=A 2) slightly longer than antennulae; peduncle art 4, 5 about equal in length; flagellum subequal to flagellum of antennulae. Cx 2 (fig. 5) nearly ovate, twice as high as broad; Cx 3 somewhat rectangular, not wider than the second but considerably deeper; Cx 4 (fig. 6) very large, slightly deeper than Cx 3 and 1/3–1/4 longer than deep, being about as long as the first five segments of the thorax, the inferior margin regularly curved and the posterior convex in outline. Gn 1 (fig. 7) small and slender; merus...
Figure 8. *Metopa rubrovittata* Sars, 1883 male 3 mm; *Md* mandible; *Mxp* maxilliped; *A 1, 2* antenna 1, 2; *Gn 1, 2* gnathopod 1, 2; *Gn 1’, Gn 2’* gnathopod 1, 2 distally enlarged.
Figure 9. *Metopa rubrovittata* Sars, 1883 male 3 mm; P 3, 4, 7 peracopod 3, 4, 7; U 1–3 uropod 1–3; T telson.
triangular and distally broader than the carpus, which is not quite twice as long as broad and has the lateral margins parallel; propodus narrower but slightly longer than the carpus and narrowed distally; dactylus about half as long as the propodus. Gn 2 (Fig. 5) stouter; merus short triangular, carpus much broader than long and only slightly produced beneath the propodus; propodus about as long as the breadth of Cx 2, nearly twice as long as broad; palmar margin (Fig. 8) convex in outline, slightly oblique, with an acute lobe and a spine at the posterior angle, within which the top of the dactylus closes. P 4, 5 slender and nearly naked, P 5 basis slender, four times as long as broad, not wider than the merus. P 6, 7 slightly shorter than P 5, basis posteriorly dilated and squamiform in both pairs, but broader in P 7. U 3 ramus slightly longer than the peduncle.

Length of largest specimen, from front of head to tip of telson, about 6 mm.

The mandibles are without palp or molar tubercles, and in all other characters the species agrees with the genus Stenothoe as restricted by Boeck, but it seems to be very distinct from either of the European species.

Discussion. The hint after the original description, that this species should belong to Stenothoe as it has no mandible palp, was not convincing: no Stenothoe is described from the region off Massachusetts or Connecticut, nor from the entire Atlantic, with gnathopods similar to the ones illustrated.

The incomplete illustrations of S. ratmanovi (Gurjanova, 1948) are very similar to what little we know about ?Stenothoe peltata, and the two species may well be synonymous, in spite of the large geographic distance between the type localities. In that case the older name Stenula peltata (Smith, 1874) would become the valid name of the taxon.

We hoped to get more information by studying the single type specimen (see Fig. 11, 12) and illustrate here all what we could see; but there were no mouthparts except the maxilliped, and we still don’t know anything about the shape of the mandibular palp.

A sample in the collections of the Smithsonian Inst. (Washington) raised new hope to shed light in this situation: there could exist a Stenula sp. from the coelenteron of Haliactis arctica. Will this be S. peltata?

Stenula pugilla sp. n.

http://zoobank.org/F3F651B1-E8C4-430E-8184-219956DFE464

Figures 14–18

Vader 1983: 146, sub Stenothoe sp.

Additional material. male, female on 2 slides, both 3 mm.

Type locality. Chukchi Sea, Arctic. From coelenteron of Haliactis arctica.

Etymology. the epithet should remind on the shape of the propodus Gn 2, which looks somewhat like a small fist, in Latin „pugilla”; it is used as noun in apposition.

Description.

Length 3 mm.

Head. Eyes round, normal. Mouthparts: Md with very short palp, length about half of width of incisor. Mx 1
Figure 11. *Stenula peltata* (Smith, 1872): original illustrations of 5 gnathopod 2; 6 ? peraeopod 4; 7 gnathopod 1; 8 dactylus and propodus of gnathopod 2 distally.
Figure 12. Stenula peltata (Smith, 1872): illustration of the single type specimen; A 1, 2 antenna 1, 2; Mx 1 maxilla 1; Mxp maxil-liped; Gn 1 gnathopod 1 without propodus and dactylus; Gn 1’ dactylus, propodus and carpus enlarged; Gn 2 gnathopod 2; Gn 2’ dactylus and propodus enlarged; Gn 2” gnathopod 2 tip of carpus enlarged.
Figure 13. *Stenula peltata* (Smith, 1872): illustration of the single type specimen; P 3, 4, 5, 7 peraeopod 3, 4, 5, 7; Ep 3 third epi-meral plate; U 1, 2, 3 uropod 1, 2, 3; T telson.
Figure 14. *Stenula pugilla* sp. n. female 3 mm: A 1, 2 antenna 1, 2; Md mandible; Mx 1, 2 maxilla 1, 2; Mxp maxilliped; Gn 1, 2 gnathopod 1, 2.
Figure 15. *Stenula pugilla* sp. n. female 3 mm: **Gn 1** gnathopod 1 distal arts; **Gn 2** gnathopod 2; **Gn 2’** gnathopod 2 distally enlarged.
Figure 16. *Stenula pugilla* sp. n. female 3 mm: P 3–7 peraeopod 3–7; Ep 1–3 epimeral plate 1–3; U 1–3 uropod 1–3; T telson.
Figure 17. *Stenula pugilla* sp. n. male 3 mm: **Gn 1** gnathopod 1; **Gn 2, Gn 2** gnathopod 2 from both sides.
Figure 18. *Stenula* pugilla sp. n. male 3 mm: Gn 2 gnathopod 2; P 6, 7 peraeopod 6, 7; U 1–3 uropod 1–3; T telson.

Peraeone. Gn 1 basis on anterior margin setose, merus with short stiff setae, carpus with long setae and pectinate spines, propodus hind margin setose, somewhat rounded to nearly straight.

Cx 2 tongue-shaped. Gn 2 male and female basis on both margins beset with setae; merus rectangular, naked, carpus triangular, with stiff setae posterodistally, propodus medially widest with setose palm, defined by thumb-shaped protrusion.

Peraeopods. Cx 3 narrow, distally rounded, posteriorly with some setae; Cx 4 distally about 3× wider than Cx 3. P 3 dactylus clearly longer than in other pereaeopods; P 3–7 merus somewhat widened and not much lengthened; P 6, 7 basis widened, with parallel margins.

Pleon. U 1 peduncle spinose, > slightly unequal rami; U 2 rami subequal; U 3 peduncle = ramus art 1 = ramus art 2.

Telson naked, triangular.

Female: subsimilar to male.

Remarks. The note ‚from the coelenteron of _Haliactis_‘ on the label of this sample may as well have meant that the sea anemones had contracted on collection.

Discussion. Within the above discussed criteria of dividing _Stenula_ species into groups, the new species belongs to the majority having Gn 1 propodus subequal to carpus (together with _S. solsbergi_, see below), here transferred to _Stenula_ and to the few members having a very short stump of mandible palp. The shape of Gn 2 palm male and female defined by a thumb-like hump is unique and quite helpful in identifying this species.

Stenula solsbergi (Schneider, 1884)

Figures 19, 20

Metopa solsbergi Schneider, 1884: 71; Sars 1892: 266, t. 94; Lincoln 1979: 186, fig. 84.

Material examined. One specimen, 3 mm, from the vicinity of Tromsø, N Norway (without date), collected together with _Chlamys_. The material was dredged in an area with much _Metridium_.

Type locality. Malangenfjord, Norway; 18 m depth.

Vader 1983 reported already _Metopa solsbergi_ from the North Atlantic: Elmhirst 1925 found this species present on _Metridium senile_ L. on pier piling in western Scotland, Fenwick and Steele 1983 off the coast of Newfoundland, Canada, again on _Metridium_.

This seems to be the very first time that the mouthparts were checked, and a reduced, uniarticulate mandibular palp could be illustrated, moving also this species to _Metopa_.

At the end of our study, we now know 16 members of the genus _Stenula_, as _S. invalida_, _S. solsbergi_ and _S. pu-gilla_ sp. n. are added, _S. arctica_ given in synonymy with _S. nordmanni_, _S. latipes_ revived and _S. rubrovittata_ put back into _Metopa_

S. alexanderi Tzetkova & Golikov, 1990; Siberia
S. angusta (Shoemaker, 1955); Alaska, N Pacific
S. bassarginensis (Gurjanova, 1948); Arctic
S. beringiensis (Gurjanova, 1948); Bering Sea, N Pacific
S. derjugini (Gurjanova, 1948); Bering Sea, N Pacific
S. incola J.L. Barnard, 1969; California, Pacific
S. invalida (Sars, 1892); Atlantic
S. latipes (Chevreux & Fage, 1925) (type); Atlantic
S. modosa J.L. Barnard, 1962; California, Pacific
S. nordmanni (Stephensen, 1931); Greenland, ?SW-North Sea (fide Schellenberg 1942: 120) (?syn. with _S. arctica_ (Gurjanova, 1951); Arctic)
S. peltata (Smith, 1872); Atlantic (generic allocation doubtful)
S. pugilla sp. n.; Chukchi Sea, Alaska
S. ramanovii (Gurjanova, 1948) (could be junior synonym of _S. peltata_)
S. serripes (Gurjanova, 1955); Kurile Isl., NE Pacific
S. solsbergi (Schneider, 1884); N. Norway, N. Atlantic
S. ussuriensis (Gurjanova, 1948); Japan Sea, NE Pacific

Key to world _Stenula_ s. l.

The amphipod genus _Stenula_ is probably not a monophyletic entity (cf. Tandberg and Vader 2011, this paper), and it is at present not possible to decide which taxa belong to it. In this key we have therefore cast our nets widely, and we include all species in the _Metopa-Stenula_ complex with uniarticulate mandibular palp. This palp is very short in what we might call ‚typical _Stenula_‘, a bit longer, but still shorter than the incisor of the mandible, in a number of other species, also traditionally placed in _Stenula_, and still a bit longer, but clearly uniarticulate, in a few _Metopa_ species: _M. hearni_, _M. palmata_ and _M. simuata_. Just’s (1980) ‚_Stenula sp.“ is in our opinion identical with _M. simuata_, as that author himself already suspected.

The task has been made more difficult by several factors: many species have only been partly illustrated, and at least for the species _S. angusta_, _S. invalida_, _S. modosa_ and ‚_S. peltata_‘, as well as possibly some of Gurjanova’s species, males are still unknown.

We treat here the 16 _Stenula_ species mentioned above, plus three species which are closely related, but until now still left unchanged in _Metopa_:
Figure 19. *Stenula solsbergi* (Schneider, 1884): Md mandible; Mx 1 maxilla 1; Gn 1 gnathopod 1; Gn 1’, Gn 1 ‘’ gnathopod 1 right and left distally enlarged.
Figure 20. *Stenula solsbergi* (Schneider, 1884): Gn 2 gnathopod 2; Cx 3, 4 coxa 3, 4; P 5, 7 peraeopod 5, 7; U 1–3 uropod 1–3; T telson.
1 Coxa 4 distal margin clearly sinuous; N. Norway, 4 mm...M. sinuata Sars, 1892
 - Coxa 4 distal margin regularly convex or almost straight ..2
2 Gn 1 propodus and carpus very long and slender, dactylus broad and heavily setose; Gn 2 rectipalmate 3
 - Gnathopods not as above .. 4
3 Gn 1 propodus < carpus, palm concave, dactylus length to width > 2; N. Norway, 5 mm....................
 - M. palmala Sars, 1892 (see note 1)
 - Gn 1 propodus > carpus, palm convex, dactylus length to width = 3:2; Laptev Sea, 3.8 mm..............
 - S. alexanderi Tzvetkova & Golikov, 1990 (see note 2)
4 P 6–7 basis and merus posteriorly serrated, hind margin of basis proximally with acute tooth; Kurile Islands, NE Pacific, 7 mm.......................... S. rathmanovi (Gurjanova, 1982)
 - P 6–7 basis not serrated nor with tooth .. 5
5 Gn 2 propodus in male with deep U-shaped excavation.. 6
6 Gn 2 propodus in male not with deep U-shaped excavation... 7
7 Gn 1 propodus in male palm clearly irregular, defined by strong tooth .. 8
 - Gn 2 propodus male palm clearly irregular, defined by strong tooth 9
8 Telson with 3 pairs of spines; Kamchatka, NE. Pacific, 3.5 mm............................. S. beringiensis (Gurjanova, 1948)
 - Telson nacked or with small setules; California, 2.5 mm... S. incola Barnard, 1969
9 Gn 2 propodus palmar corner prominent, shaped like a finger-tip; Chukchi Sea, 3 mm S. pugilosa Krapp-Schickel & Yader, 2015
 - Gn 2 propodus palmar corner blunt or with acute tooth ... 10
10 Gn 1 carpus unusually long, up to 3 × longer than wide; eyes very large................................. 11
 - Gn 1 carpus clearly not as long; eyes normal .. 12
11 Gn 1 dactylus not reaching half length of propodus; A1 clearly shorter than A2; P 6–7 basis with rounded hind margin; W. Greenland, 5 mm..................... S. nordmanni (Stephensen, 1931) (= S. arctica (Gurjanova, 1951) (see note 3)
 - Gn 1 dactylus reaching half length of propodus. A1 and 2 subequal; P 6–7 basis with straight hind margin; California, 2 mm.. S. modosa Barnard, 1962
12 Telson with 2 pairs of spines; Bering Sea, 4 mm. ... S. derjugini (Gurjanova, 1948)
 - Telson nacked ... 13
13 Gn 1 carpus clearly shorter than propodus .. 14
 - Gn 1 carpus subequal to propodus ... 15
14 P 7 very broad, posterior margin convex; mandible-palp long, but unarticulated; Canada, 3–4 mm
 - M. hearini (Dunbar, 1954)
 - P 7 basis slender, posterior margin rather straight; mandible-palp shor, Point Barrow, Alaska, 3 mm.......................... S. angusta (Shoemaker, 1955)
15 P 6–7 posterior tip on merus reaches halfway of less along carpus ... 16
 - P 6–7 posterior lobe on merus reaches clearly further than halfways along carpus 17
16 Gn 2 propodus length:width = 3. P 7 basis broad, length = 2 width.; N. Norway, 4 mm........... S. invalida (Sars, 1892)
 - Gn 2 propodus l:w = 2; P7 basis less wide, l< 2w, N. Norway, 7 mm.............................. S. solsbergi (Sp. Schneider, 1884)
17 We have been unable to find reliable differences between Stenula latipes (Chevreux & Fage, 1925), a species associated with hermit crabs in W. Europe, and S. rathmanovi (Gurjanova, 1948), an only partly described species from Kamchatka in the northern Pacific. Moreover, the illustrations of this latter species and those of Stenothoe peltata (Smith, 1874) from Georges Banks, NW Atlantic, are, as far as they go, practically identical.

Notes
1) This is the type species of Norman’s (1902) short-lived genus Sthenometopa.
2) Probably not a Stenula, to be transferred to Metopa or Sthenometopa.
3) In transferring Metopa nordmanni to Stenula, Just (1980) apparently overlooked the fact that this species is clearly identical to Stenula arctica (Gurjanova, 1951).
Table 1. Associations of Stenothoidae with larger marine invertebrates.

<table>
<thead>
<tr>
<th>Amphipods</th>
<th>Hosts</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametopella antholobae</td>
<td>Antholoba achates (Drayton, 1846)</td>
<td>Krapp-Schickel and Vader 2009</td>
</tr>
<tr>
<td>Krapp-Schickel & Vader, 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenothoe barrowensis</td>
<td>unidentified</td>
<td>Shoemaker 1955; Vader 1983</td>
</tr>
<tr>
<td>Shoemaker, 1955 Point Barrow, Alaska</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenothoe bartholomea</td>
<td>Bartholomea annulata (Lesueur, 1817)</td>
<td>this paper, Vader 1983 (as Stenothoe sp. n.)</td>
</tr>
<tr>
<td>Krapp-Schickel & Vader, 2015 Florida Keys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenothoe boloceropsis</td>
<td>Boloceropsis platei McMurrich, 1904</td>
<td>Krapp-Schickel et al. 2015</td>
</tr>
<tr>
<td>Krapp-Schickel, Häussermann & Vader, 2015 Chiloe Island, Chile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenothoe brevicornis</td>
<td>Actinostola callosa (Verrill, 1882)</td>
<td>Vader and Krapp-Schickel 1996</td>
</tr>
<tr>
<td>G. O. Sars, 1883</td>
<td>Liponema multicorin (Verrill, 1880)</td>
<td>Fenwick and Steele 1983</td>
</tr>
<tr>
<td>N. Norway, Newfoundland, Canada</td>
<td></td>
<td>Auster et al. 2011</td>
</tr>
<tr>
<td>Stellwagen Bank, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenula pugilla</td>
<td>Haliactis arctica Carlgren, 1921</td>
<td>this paper (see also Vader 1983, as Stenothoe sp.)</td>
</tr>
<tr>
<td>Krapp-Schickel & Vader, 2015 Chukchi Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenula solsbergi</td>
<td>Metridium senile (L., 1767)</td>
<td>(as Metopa solsbergi)</td>
</tr>
<tr>
<td>(Sp. Schneider, 1884) W.Scotland Newfoundland, Canada</td>
<td></td>
<td>Elmhirst 1925</td>
</tr>
<tr>
<td>Other large coelenterates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metopa bruzelii</td>
<td>Primnoa resedaeformis (Gunnerus, 1763)</td>
<td>Buhl-Mortensen and Mortensen 2004, 2005</td>
</tr>
<tr>
<td>Goes, 1866 Newfoundlnd, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proboloides calcara</td>
<td>Primnoa resedaeformis</td>
<td>Buhl-Mortensen and Mortensen 2004, 2005</td>
</tr>
<tr>
<td>G. O. Sars, 1883</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newfoundland, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenothoe minuta</td>
<td>Astrangia danae Milne-Edwards & Haime, 1849</td>
<td>Pearse 1947</td>
</tr>
<tr>
<td>Holmes, 1905 N. Carolina, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenothoe valida</td>
<td>Millepora complanata Lamarck, 1816</td>
<td>Lewis 1992</td>
</tr>
<tr>
<td>Dana, 1853 Barbados, W.Indies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenula nordsmanni</td>
<td>Geremia sp.</td>
<td>Fenwick and Steele 1983</td>
</tr>
<tr>
<td>(Stephensen, 1931) Newfoundland, Canada</td>
<td></td>
<td>(as S. arctica)</td>
</tr>
<tr>
<td>Torometopa sp.</td>
<td>Primnoela sp.</td>
<td>De Broyer et al. 2003?</td>
</tr>
<tr>
<td>Antarctic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydromedusae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metopa alderi</td>
<td>Tima bairdi (Johnston, 1933)</td>
<td>Evans and Ashworth 1909</td>
</tr>
<tr>
<td>(Sp. Bate, 1857) E. Scotland</td>
<td></td>
<td>Hamond 1967</td>
</tr>
<tr>
<td>Norfolk, England</td>
<td></td>
<td>Dahl 1946; Hansson 1971</td>
</tr>
<tr>
<td>Bohuslän, Sweden</td>
<td></td>
<td>Vader 1972</td>
</tr>
<tr>
<td>N Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metopa borealis</td>
<td>Phialidium sp.</td>
<td>Elmhirst 1925</td>
</tr>
<tr>
<td>G. O. Sars, 1883</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Scotland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascidians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malvinometopa porcellana</td>
<td>‘pharynx of large ascidian’</td>
<td>K.H.Barnard 1932 (as Metopoides p.)</td>
</tr>
<tr>
<td>(K. H. Barnard, 1932) Falkland islands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metopa groenlandica</td>
<td>Pyura ovifera (Linnaeus, 1767)</td>
<td>Blake 1929 (as M. hirsutimana)</td>
</tr>
<tr>
<td>Hansen, 1888 Maine, USA W. Greenland</td>
<td></td>
<td>Stephensen and Thorson 1936</td>
</tr>
<tr>
<td>Stenothoe eduardi</td>
<td>on and in ascidians (Microcosmos)</td>
<td>Tandberg and Vader 2009</td>
</tr>
<tr>
<td>Krapp-Schickel, 1976 Napoli, Mediterranean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenothoe marina</td>
<td>“inside ascidians”</td>
<td>G. O. Sars 1892, Vader 1984</td>
</tr>
<tr>
<td>Sp. Bate, 1857 Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenothoe minuta</td>
<td>Styela plicata (Lesueur, 1823)</td>
<td>Pearse 1947</td>
</tr>
<tr>
<td>Holmes, 1905 N. Carolina W. France</td>
<td></td>
<td>Pirlot 1933</td>
</tr>
<tr>
<td>Stenothoe valida</td>
<td>Boltenia sp., various ascidians</td>
<td>Toulmond and Truchot 1964</td>
</tr>
<tr>
<td>Dana, 1853 W. Greenland</td>
<td></td>
<td>(as Microstenothoe ascidiae Pirlot)</td>
</tr>
<tr>
<td>Torometopa parallellocheir</td>
<td>‘branchial sac of simple ascidian’</td>
<td>Stebbing 1920 (as Metopoides p.)</td>
</tr>
<tr>
<td>(Stebbing, 1888) Falkland Islands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metopa alderi</td>
<td>Musculus discors (Linnaeus, 1767), M. niger (JE Gray, 1824)</td>
<td>Tandberg et al. 2010</td>
</tr>
<tr>
<td>(Sp. Bate, 1857) Svalbard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A short survey of associations between stenothoids and larger marine invertebrates (Table 1).

Table 1 lists the associations between stenothoid amphipods and other marine invertebrates known to us, with the exception of those reported from sponges, hydroids or bryozoans. These latter are excluded because in most cases it is unclear what the exact niche of the amphipods is: usually the labels say only ‘among hydroids and bryozoans’ or ‘found together with sponges’. Among the others the amphipods of various large coelenterates and also those found in ascidians generally do not seem to be obligate symbionts. Although now and then found in large numbers (e.g. Metopa bruzelii and Proboloides calcarea on gorgonians), the same species are also regularly found apparently free-living.

The situation is different for the associates of mollusks (all Metopa species) and those on sea anemones (mostly Stenothoe and Stenula species). Practically all these species appear to be obligate associates of only a single or in some cases a few hosts, and they have never been found free-living (for a possible exception see Blain and Gagnon 2014, who claim to have found numbers of Stenothoe brevicornis on the alga Desmarestia viridis). The amphipod associates of sea anemones always live on the column of the host or among the tentacles (Elmhirst 1925, Krapp-Schickel and Vader 2009, Krapp-Schickel et al. 2015; Vader 1983, Vader and Krapp-Schickel 1996), with the possible exception of Stenula pagula, found according to the label ‘in the coelenteron of Halichondria borealis’ (this paper). At least Stenothoe brevicornis, somewhat surprisingly, feeds to a large extent on host tissue (Moore et al. 1994), contrary to earlier assumptions (Vader 1983). Large numbers of amphipods are usually found on a single host, and ovigerous females are commonly present. Interestingly, sexual dimorphism is in most cases much less developed in the associates of sea anemones than in related free-living stenothoids (see also Vader 1983).

In contradistinction to the case with sea anemones, all the stenothoid associates of bivalve mollusks are Metopa species. Once more the associations seem to be obligate ones, the amphipods are rarely found free-living (and never leave their hosts in laboratory observations) and they are confined to a single host or, in the case of Metopa glacialis, to a series of closely related host species. A partial exception is Metopa alderi, usually an associate of large hydroids and hydromedusae, that recently was found in Musculus spp in N. Spitsbergen (Tandberg et al. 2010b). The data on mollusk-associated stenothoids have recently been reviewed by Tandberg et al. (2010a): the amphipods live inside the host and feed on that part of the ingested material that the host does not consume itself. In addition, the stenothoid symbionts of bivalves seem to exhibit territoriality as well as extended parental care: invariably only a single pair of adults is present within a single host, often together with several cohorts of juveniles.

In the case of the single, quite aberrant Stenothoe species that lives on a spider crab, S. symbiotica Shoemaker, 1956, its biology is as yet completely unknown, but also this association appears to be an obligate and probably species-specific one; the species has never been collected elsewhere and it has clearly prehensile pereopods. Also the amphipod associates of hermit crabs and their tenant mollusk shells are of unknown biology. Metopelloides paguri Marin & Sinelnikov, 2012 and M. micropalpa (Shoemaker, 1930) have slightly but clearly prehensile posterior pereopods, and may therefore well be direct associates of their host hermit crabs (Vader 1983b). But the somewhat mysterious pair of Metopa rubroviolata Sars and Stenula latipes (Chevreux & Fage) do not have prehensile pereopods (even though the posterior legs

<table>
<thead>
<tr>
<th>Amphipods</th>
<th>Hosts</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metopa glacialis (Krayser, 1842)</td>
<td>Musculus discors (Linnaeus, 1767)</td>
<td>Shoemaker 1955</td>
</tr>
<tr>
<td>N. Brunswick, Canada</td>
<td>M. koreanus Ockelmann, 1980</td>
<td>Vader and Beehler 1983</td>
</tr>
<tr>
<td>Bear Island</td>
<td>M. laevigatus (JE Grey, 1824)</td>
<td>Tandberg, Vader and Berge 2010</td>
</tr>
<tr>
<td>Svalbard</td>
<td></td>
<td>Ockelmann 1980</td>
</tr>
<tr>
<td>Korea</td>
<td></td>
<td>Just 1983</td>
</tr>
<tr>
<td>W. Greenland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metopa groenlandica Hansen, 1888, E. Greenland*</td>
<td>Pandora glacialis Leach, 1819</td>
<td>Stephensen and Thorson 1936</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hermit crabs</th>
<th>Hosts</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metopa rubrovittata G. O. Sars, 1883 N.W. Europe*</td>
<td>Pagurus bernhardus Linnaeus, 1758</td>
<td>many authors</td>
</tr>
<tr>
<td>St Laurent estuary, Canada</td>
<td>Pagurus pubescens Krayser, 1838</td>
<td>Besner 1976</td>
</tr>
<tr>
<td>M. paguri Marin & Sinelnikov, 2012</td>
<td>Pagurus pectinatus* (Stimpson, 1858) & Elasochirus cavimanus* (Miers, 1879)</td>
<td>Marin and Sinelnikov 2012</td>
</tr>
<tr>
<td>Russian coast Japan Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenula latipes (Chevreux & Fage, 1925)</td>
<td>Pagurus bernhardus* (L., 1758)</td>
<td>Chevreux and Fage 1925, many later authors, ?Giard 1908 (as Metopa rubrovittata)</td>
</tr>
<tr>
<td>W. France</td>
<td></td>
<td>McGrath 1978</td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td>Lincoln 1979</td>
</tr>
<tr>
<td>England</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spider crabs</th>
<th>Hosts</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stenothoe symbiotica Shoemaker, 1956</td>
<td>‘large spider crab’</td>
<td>Shoemaker 1956</td>
</tr>
<tr>
<td>Florida, USA</td>
<td>Stenocionops spinimana* (Rathbun, 1892)</td>
<td>Thomas and Cairns 1984</td>
</tr>
<tr>
<td>Florida, USA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

zse.pensoft.net
carry maybe more spines than is usual in *Metopa* species?) and many authors have associated these species primarily with the *Hydractinia*-cover of the tenanted gastropod shells rather than with the hermit crabs themselves, although without any proof. These two species occupy the same niche, and slightly different, but possibly overlapping distributions, and have the exactly identical, quite special coloration pattern, but according to present classifications they have to be placed in different genera. Also the species associated with hermit crabs seem to be largely obligate symbionts, although possibly occurring on a larger range of hosts.

Acknowledgements

We are grateful to Dr. Chad Walter of the Smithsonian Institution, Washington DC, who after thirty years refound the unidentified sample that contained *Stenula pugilla*, and lent it to us. We thank prof. R.T. Barrett, Tromsø for linguistic assistance, as well as Dr. Oliver Coleman, Naturkunde Museum Berlin, for constructive criticism.

References

Schneider JS (1884) Undersøgelser af dyrelivet i de arktiske fjorder. II. Crustacea og Pycnogonida indsamlede i Kvaenangsfjorden 1881. Videnskabs-selskabs i Christiania 18: 141–159.

