Taxonomical study on a sample of land and freshwater snails from caves in central Brazil, with description of a new species

Rodrigo B. Salvador¹,², Daniel C. Cavallari³, Luiz R. L. Simone³

¹ Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191, Stuttgart, Baden-Württemberg, Germany
² Mathematisch-Naturwissenschaftliche Fakultät, Eberhard Karls Universität Tübingen. Sigmarsstraße 10, 72076, Tübingen, Baden-Württemberg, Germany
³ Museu de Zoologia da Universidade de São Paulo. Avenida Nazaré 481, 04263-000, São Paulo, SP, Brazil

http://zoobank.org/1ED4E257-4CD3-4A1D-82B6-40615D572C91

Corresponding author: Rodrigo B. Salvador (salvador.rodrigo.b@gmail.com)

Abstract

A sample of land and freshwater snails, mainly pulmonates, was recently collected in caves in Goiás and Bahia states, Brazil. Twenty-one species were found in the material. The following species are reported for the first time for Goiás state: Cecilioides consobrina (Ferussaciidae), Dysopeas muibum and Stenogyra octogyra (Subulinidae), Entodina jekylli and Prohappia besckei (Scolodontidae; also reported for the first time for Bahia state), Pupisoma dioscoricola (Valloniidae). A new species from Goiás is described here in: Gastrocopta sharae sp. n. (Gastrocoptidae). The new records and species addressed here constitute important findings, helping to fill distributional gaps and improving the knowledge of the local molluscan fauna, an essential step for future conservation efforts.

Key Words

Bahia caves Gastropoda Goiás Gastrocopta sharae sp. n. stygofauna troglofauna

Introduction

The Brazilian continental molluscan fauna is still poorly known and is deemed to have so many undescribed species as to triple the presently known number (Simone 1999, 2006). Since cave-dwelling invertebrates, in general, have received scarce attention from researchers in Brazil (Trajano and Bichuette 2010), it should be no surprise that cave-dwelling land and freshwater snails are even less known (a few exceptions are: Bichuette and Trajano 1999, 2003, Simone 2013, Salvador et al. 2016). This lack of study is alarming, especially from a conservationist point of view, since caves usually have very fragile ecosystems with a high degree of endemic species (Trajano 2000, Gallão and Bichuette 2012, Silva and Ferreira 2015).

Some recent expeditions (April/2012–January/2013) by Dr. M. E. Bichuette (Universidade Federal de São Carlos; São Carlos, Brazil) and her team to cave systems in Goiás and Bahia states, central Brazil, recovered many land and freshwater snails. This whole material was deposited in the malacological collection of the Museu de Zoologia da Universidade de São Paulo (MZSP, São Paulo, Brazil) and is studied here. The sample studied herein includes the description of a new species and occurrence of another twenty species, some of which are new records for Bahia and/or Goiás states.

Material and methods

All the material studied here was collected by M. E. Bichuette and her team and deposited in the MZSP. All the specimens were collected in caves (see Table 1 for all the localities) and comprise both empty shells and living an-
Brief descriptions of each locality can be found in Table 1, alongside their precise coordinates (see also Fig. 1). Localities from Goiás all fit into the Cerrado Biome, while those in Bahia are either Campos Rupestres (montane subtropical savannah) or a transition between the Cerrado and the Caatinga.

Identification was conducted based on the work of Simone (2006), the original descriptions, and additional material housed in the collection of the MZSP. Unfortunately, some species could not be identified beyond genus level, either due to poor preservation of the specimens or to very young age. The complete list of species, as well as a relation of all the studied material, can be found in Table 2. Species that deserve further notice, such as those with new records, are figured and discussed in the Systematics session below. Measurements were made with a digital caliper or with the aid of the Zeiss Axiovision SE64 Rel 4.8 imaging software. The following abbreviations are used herein: shell dimensions: $H =$ shell length, $D =$ shell greatest width, $h =$ aperture height, $d =$ aperture width; institutions: NHMUK = Natural History Museum (London, UK); NMSW = National Museum Wales (Cardiff, UK).

Systematics

Pulmonata
Stylommatophora
Superfamily Pupilloidea
Family Gastrocoptidae
Genus Gastrocopta Wollaston, 1878
Gastrocopta sharae sp. n.

http://zoobank.org/923AD6BA-B7BD-4AB1-A67E-35E769EE8290
Figs 2–6

Type material. Holotype: MZSP 122725 (Figs 2–4). Paratype: MZSP 122726, from type locality (Figs 5–6).
Table 2. List of all species found on the present material, with information on locality data, whether it is a new occurrence (species with new records are analyzed more thoroughly in the text) and record number of the MZSP collection. Abbreviations: BA, Bahia state; GO, Goiás state; Can, Gruta Cantinho; Cat, Gruta do Catão; Dor, Gruta das Dorres; FdQ, Gruta Fundo de Quintal; Jud, Gruta Judite; PdV, Pasto de Vacas I; Ren, Gruta do Renataõ; Rev, Gruta Revolucionários; Tar, Gruta da Tarimba; hol, holotype; par, paratype; sh, shell; spc, specimen.

<table>
<thead>
<tr>
<th>Species</th>
<th>Family</th>
<th>New record?</th>
<th>Cave(s)</th>
<th>Collection Nr. (MZSP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neritimorpha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicina angulata Sowerby, 1873</td>
<td>Helicinidae</td>
<td>–</td>
<td>Ren (BA)</td>
<td>MZSP 122761 (1 spc)</td>
</tr>
<tr>
<td>Caenogastropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pomacea sp.</td>
<td>Ampullariidae</td>
<td>–</td>
<td>Cat (BA)</td>
<td>MZSP 122776 (1 sh)</td>
</tr>
<tr>
<td>Idiopyrus souleyetianus Pillsbury, 1911</td>
<td>Pomatiopsidae</td>
<td>–</td>
<td>Cat (BA)</td>
<td>MZSP 122772 (1 sh), 122773 (5 sh), 122774 (6 sh), 122775 (3 sh)</td>
</tr>
<tr>
<td>Pulmonata - Hygrophila</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomphalaria sp.*</td>
<td>Planorbidae</td>
<td>–</td>
<td>Cat (BA), PdV (GO)</td>
<td>MZSP 122768 (17 sh), 122769 (1 sh), 122770 (5 sh), 122771 (3 sh), 122772 (1 sh)</td>
</tr>
<tr>
<td>Aplexa marmorata (Goulding, 1828)</td>
<td>Physidae</td>
<td>–</td>
<td>Jud (GO)</td>
<td>MZSP 122730 (1 spc)</td>
</tr>
<tr>
<td>Pulmonata - Stylommatophora</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solaropsis sp.</td>
<td>Camaenidae</td>
<td>–</td>
<td>Tar (GO)</td>
<td>MZSP 122727 (2 spc)</td>
</tr>
<tr>
<td>Radiodiscus sp.</td>
<td>Charopidae</td>
<td>–</td>
<td>Tar, Rev (GO)</td>
<td>MZSP 122816 (1 sh), 122817 (9 sh), 131089 (2 sh), 131090 (1 sh)</td>
</tr>
<tr>
<td>Żičhogyra sp.</td>
<td>Charopidae</td>
<td>–</td>
<td>Dor (GO)</td>
<td>MZSP 122734 (1 sh)</td>
</tr>
<tr>
<td>Ceciioide consobrina (d’Orbigny, 1841)</td>
<td>Ferussaciida</td>
<td>yes</td>
<td>Tar, Rev (GO)</td>
<td>MZSP 131578 (1 sh), 131579 (1 sh), 122756 (1 sh), 122759 (1 sh)</td>
</tr>
<tr>
<td>Gastrocopta sharae sp. nov.</td>
<td>Gastrocoptidae</td>
<td>yes</td>
<td>Rev (GO)</td>
<td>MZSP 122725 (hol), MZSP 122726 (par)</td>
</tr>
<tr>
<td>Cyclodontina sexdentata (Spix, 1827)</td>
<td>Orthalicidae</td>
<td>–</td>
<td>Cat (BA)</td>
<td>MZSP 122763 (1 spc)</td>
</tr>
<tr>
<td>Ringincella luetzelburgi/ Weber, 1925</td>
<td>Orthalicidae</td>
<td>–</td>
<td>Ren (BA)</td>
<td>MZSP 122762 (2 sh)</td>
</tr>
<tr>
<td>Entodina jeckylli Baker, 1913</td>
<td>Scolodontidae</td>
<td>yes</td>
<td>Tar, Rev (GO)</td>
<td>MZSP 122735 (10 sh + 4 spc), 122757 (1 sh), 131091 (5 sh + 1 spc), 131092 (2 sh), 131093 (3 sh)</td>
</tr>
<tr>
<td>Happia sp.</td>
<td>Scolodontidae</td>
<td>–</td>
<td>Cat (BA)</td>
<td>MZSP 122767 (1 spc)</td>
</tr>
<tr>
<td>Happia glaberrima</td>
<td>Scolodontidae</td>
<td>–</td>
<td>Rev (GO), Cant (BA)</td>
<td>MZSP 122822 (1 spc), 122824 (1 spc), 122825 (2 sh), 122826 (4 spc), 1228227 (1 spc)</td>
</tr>
<tr>
<td>Prohappia besceki (Dunker, 1847)</td>
<td>Scolodontidae</td>
<td>yes</td>
<td>Can, Ren (BA); Tar, Rev (GO)</td>
<td>MZSP 122758 (1 sh), 122763 (4 sh + 1 spc), 122758 (1 sh), 122760 (4 sh + 1 spc), 122764 (1 sh), 131094 (4 sh), 131095 (7 sh), 131096 (3 sh), 131097 (3 sh), 131098 (1 spc), 131099 (1 sh)</td>
</tr>
<tr>
<td>Allapeas microa (d’Orbigny, 1835)</td>
<td>Subulinidae</td>
<td>–</td>
<td>FdQ (GO)</td>
<td>MZSP 122729 (1 sh) MZSP 122732 (1 sh)</td>
</tr>
<tr>
<td>Dyspeas musibum (Marcus & Marcus, 1968)</td>
<td>Subulinidae</td>
<td>yes</td>
<td>Tar (GO)</td>
<td>MZSP 131100 (1 sh)</td>
</tr>
<tr>
<td>Leptinaria sp.</td>
<td>Subulinidae</td>
<td>–</td>
<td>Cat, Ren (BA)</td>
<td>MZSP 122765 (1 sh), 122766 (1 sh)</td>
</tr>
<tr>
<td>Leptinaria concentrica (Reeve, 1849)</td>
<td>Subulinidae</td>
<td>–</td>
<td>Rev (GO)</td>
<td>MZSP 122828 (1 spc)</td>
</tr>
<tr>
<td>Stenogyra octogyna (Pfeiffer, 1856)</td>
<td>Subulinidae</td>
<td>yes</td>
<td>Dor, Jud, Tar (GO)</td>
<td>MZSP 122728 (1 sh), 122731 (1 spc), 122733 (2 sh)</td>
</tr>
<tr>
<td>Pupisoma dioscoricola (C.B. Adams, 1845)</td>
<td>Valloniidae</td>
<td>yes</td>
<td>Tar, Rev (GO)</td>
<td>MZSP 122737 (1 sh), 122738 (1 sh), 122739 (1 sh), 131101 (1 sh)</td>
</tr>
</tbody>
</table>

Distribution. Known only from the type locality (Fig. 1).

Etymology. The name refers to Shar, a fictional goddess of darkness, caverns, and secrets, from the Faerûnian pantheon of the Forgotten Realms campaign setting of the Dungeons and Dragons role-playing game.

Diagnosis. Shell pupilloid-conical. Four apertural barriers: two lamellae and two teeth). Anguloparietal lamella shaped like narrow gutter, bent towards palatal region. **Description.** Shell minute (H < 2 mm), pupilloid-conical; greatest width of shell on body whorl (D/H = 0.6); body whorl ca. 1/2H; spire angle 48°. Whorl profile greatly convex; suture well-marked. Protoconch (ca. 1½ whorl) round, smooth; transition to teleoconch clearly marked by change to teleoconch sculpture. Teleoconch sculptured by strongly prosocline faint axial ribslet. Aperture rounded to lightly quadrangular (d/h = 0.8; h/H = 0.4); peristome reflexed; parietal callus distinctive. Apertural barriers totaling four (Fig. 3): upper palatal tooth, lower palatal tooth, columellar lamella, anguloparietal lamella. Anguloparietal lamella shaped like narrow gutter, bent towards palatal region. After the anguloparietal lamella, the strongest barriers are the anguloparietal lamella, the strongest barriers are the
lower palatal tooth and columellar lamella. Umbilicus narrow, deep.

Dimensions (in mm). **Holotype:** 4¼ whorls; H = 1.9; D = 1.1; h = 0.7; d = 0.6. **Paratype:** 4¼ whorls; H = 1.9; D = 1.1; h = 0.7; d = 0.6.

Discussion. The minute pupilloid shell and the pattern of apertural barriers, especially the presence of an anguloparietal lamella (formed by the fusion of the angular and parietal lamellae), place the present specimens in *Gastrocopta*. They are sufficiently different and easily diagnosable from all known *Gastrocopta* species in Brazil, which warrants the description of a new species: *Gastrocopta sharae* sp. n. Although each of the diagnostic features of *G. sharae* can be found separately in congers (e.g., Pilshby 1916–1918), their occurrence together is unique for this species.

Gastrocopta sharae can be easily distinguished by its strongly conical shell (Figs 2, 3, 5, 6). Nearly all Brazilian species have more pupiform/cylindrical shells: *G. barbadensida* (Pfeiffer, 1853) (Fig. 7), known from the Caribbean Islands, Venezuela, Fernando de Noronha Archipelago and Trindade Island (Cunha et al. 2015); *G. iheringi* (Suter, 1900) (Fig. 8), known only from Rio Grande do Sul state (Simone 2006); *G. oblonga* (Pfeiffer, 1852) (Fig. 9), known only from Rio Grande do Sul state (Simone 2006); and *G. servilis* (Gould, 1843) (Fig. 10), known from Ceará and Rio de Janeiro states (Simone 2006). *Gastrocopta solitaria* (Smith, 1890) (Fig. 11), from Fernando de Noronha Archipelago, is somewhat conical, but not nearly as much as *G. sharae*.

Likewise, *G. sharae* is easily diagnosable by its narrow gutter-like anguloparietal lamella (Fig. 4), slightly bent towards the palatal region of the aperture. All the Brazilian species present a bifid weak anguloparietal lamella, with the single exception of *G. iheringi* (Fig. 8). The latter also has a gutter-like lamella, but it is much broader and straight (i.e., not bent towards the palatal region). Moreover, *G. iheringi* is much taller than *G. sharae*, reaching a shell length of 2.5 mm; this might not seem a large difference at first sight, but differences of this magnitude are usually considered to be interspecific in the family.

Family Valloniidae

Genus Pupisoma Stoliczka, 1873

Pupisoma dioscoricola (C.B. Adams, 1845)

Fig. 12

Type locality. USA, Texas, Brownsville. Paralocotypes are from Mexico, San Luis Potosi, Valles Falls and Choy Cave.

Previously known distribution. From Florida, USA, to southern Brazil and northern Argentina, including the Caribbean islands (Hausdorf 2007).

Remarks. Despite the species being known throughout the Americas, the present record fills a gap in the species distribution (see the revision of Hausdorf 2007: fig. 6).

Superfamily Achatinoidea

Family Ferussaciidae

Genus Cecilioides Férrusae, 1814

Cecilioides consobrina (d’Orbigny, 1837)

Figs 13–14

Achatina consobrina d’Orbigny 1837: 89 (pl. 11 bis, Figs 10–12); d’Orbigny 1841: 170.

Cecilioides consobrina: Parodiz 1957: 131; Salgado and Coelho 2003: 154; Simone 2006: 182 (fig. 666); Aguirre et al. 2007: 10 (fig. 4.5); Miquel et al. 2007: 114; Miquel and Aguirre 2011: 109 (fig. 8).

Type locality. Near Matanzas, Cuba.

Previously known distribution. From the Caribbean Islands to central-northern Argentina (Miquel and Aguirre 2011) and Uruguay (Figueiras 1963).

Remarks. The present record is the first occurrence for Goiás and fills a gap in the species distribution in Central Brazil.

Family Subulinidae

Genus Dysopeas Baker, 1927

Dysopeas muibum Marcus & Marcus, 1968

Figs 15–16

Pseudopeas (*Dysopeas*) *muibum* Marcus and Marcus 1968: 199 (Figs 11-19).

Dysopeas muibum: Simone 2006: 185 (fig. 673); Simone and Salvador 2016: 29, fig. 97, table 1.

Type locality. São Paulo, São Paulo state, Brazil.

Previously known distribution. Known only from its type locality (Marcus and Marcus 1968; Simone 2006) and Nanuque, Minas Gerais state (Simone and Salvador 2016).

New occurrence. Goiás. Mambaí: Gruta da Tarimba.

Remarks. The present record greatly expands this species distribution: ca. 720 km to the northwest.
Genus *Stenogyra* Shuttleworth, 1854

Stenogyra octogyra (Pfeiffer, 1856)

Fig. 17

Bulimus octogyrus Pfeiffer 1856: 45.

Opeas octogyrum: Pilshry 1906: 206 (pl. 29, Figs 75–79); Baker 1913: 644; Salgado and Coelho 2003: 155.

Stenogyra octogyra: Simone 2006: 188 (fig. 695).

Type locality. Caracas, Venezuela.

Previously known distribution. Venezuela and Brazil (Pará, Ceará, Rio Grande do Norte and Mato Grosso states) (Simone 2006).

New occurrence. Goiás. Mambai: Gruta das Dores, Gruta Judite, Gruta da Tarimba.

Remarks. The present record fills a gap in the species’ previously known distribution in Brazil.

Superfamily Rhytidoidea

Family Scolodontidae

Genus *Entodina* Ancey, 1887

Entodina jekylli Baker, 1913

Figs 18–19

Type locality. Camp 39 of Stanford expedition, Madeira-Mamoré railway ca. 284 km above Porto Velho, Rondônia, Brazil.

Previously known distribution. Known only from type locality.

Remarks. There are two further possible records of this species from Peru and Bolivia (Ituarte et al. 2008; Ramirez et al. 2012), but the specimen figure by Ituarte et al. (2008: 83, text fig.), referred to as *Systrophia (Entodina)* aff. *jekylli*, is quite different from the type specimen figured by Simone (2006: 244, fig. 851B). The present specimens do compare well with the types; however, they lack the palatal tooth typical of the species (Baker 1913). This could be simple morphological variation (intraspecific differences in dentition are common in pulmonate snails), represent juvenile or sub-adult specimens or, less likely, even be an indicative that the present material represents a new species. The present record greatly extends the species distribution, ca. 2000 km southeast.

Genus *Prohappia* Thiele, 1927

Prohappia besckei (Dunker in Pfeiffer, 1847)

Fig. 20

Happia (Prohappia) besckei: Morretes 1949: 139.

Prohappia besckei: Simone 2006: 228 (fig. 873); Simone and Salvador 2016: 29 (Figs 98–100, table 1).

Type locality. Brazil (restricted to Rio de Janeiro by Hidalgo 1870).

Previously known distribution. Brazil: Minas Gerais, Rio de Janeiro and Santa Catarina states (Simone 2006; Simone and Salvador 2016). Paraguay (Morretes 1949; Simone 2006).

Remarks. The shell morphology of the present specimens compare very well to *P. besckei*; the size of the specimens from Goiás, however, is much smaller (D ~ 2 mm), slightly larger than half the normal size. This could represent a variation of the species in a cave environment, but the sample is too small to be of any significance. The present record extends the species distribution ca. 600 km to the north.

Discussion

Many records reported here are the first for either Goiás or Bahia states (Table 2). These findings are especially important as they not only extend the geographical distribution of some species but also fill “distribution gaps” of some others; for instance, one species, *Entodina jekylli*, was previously known only from its type locality. The present records are among the few concerning molluscan cave fauna. Most caves in Brazil have no legal protection and are threatened by mining activities, but still harbor new discoveries (e.g., Simone 2013). Better known geographical distributions, as well as the presence of endemic taxa, can improve arguments for conservation. It is our hope that the present work is a step towards proper legal protection of such fragile ecosystems.

Acknowledgements

We are deeply grateful to Maria E. Bichuette (UFSCar) and her team for providing the material studied here and the information on the collection localities, and to Karin Wolf-Schwenninger (SMNS) for the SEM images. This work was partly supported by a doctorate grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; Brazil) to R.B.S., proc. #245575/2012-0.
References

