Research Article |
Corresponding author: Werner Conradie ( werner@bayworld.co.za ) Academic editor: Johannes Penner
© 2022 Werner Conradie, Andreas Schmitz, Javier Lobón-Rovira, François S. Becker, Pedro Vaz Pinto, Morgan L. Hauptfleisch.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Conradie W, Schmitz A, Lobón-Rovira J, Becker FS, Vaz Pinto P, Hauptfleisch ML (2022) Rock island melody remastered: two new species in the Afroedura bogerti Loveridge, 1944 group from Angola and Namibia. Zoosystematics and Evolution 98(2): 435-453. https://doi.org/10.3897/zse.98.86299
|
Newly collected material from northern Namibia’s Otjihipa Mountains and west-central Angola allowed us to revisit the Afroedura bogerti Loveridge, 1944 group. The employment of additional gene markers, including nuclear markers, allowed us to identify two new species in the group and infer species boundaries and potential speciation events in Afroedura from southwestern Africa. The new Namibian material is recovered as a sister species to A. donveae, from which it differs mostly by the colour of the iris (copper versus black) and dorsal colouration. Material from the first elevational gradient of the escarpment in Benguela Province, Angola was found to be more closely related to A. bogerti than A. wulfhaackei. The differences between these two species are more subtle, although the new species exhibits higher mid-body scale rows (79.5 versus 74.8), different dorsal colouration and supranasal scales always in contact (versus 57% in contact).
O material recém-colectado nas montanhas Otjihipa do norte da Namíbia e no centro-oeste de Angola permitiu-nos revisitar o grupo Afroedura bogerti Loveridge, 1944. O emprego de marcadores genéticos adicionais, incluindo marcadores nucleares, permitiu-nos identificar duas novas espécies no grupo e inferir limites para separar as espécies e potenciais eventos de especiação nos Afroedura do sudoeste Africano. O novo material da Namíbia é recuperado como espécie mais próxima de A. donveae, do qual difere sobretudo pela cor da iris (acobreada ao invés de negra) e pela coloração dorsal. Ao passo que o material obtido no primeiro gradiente topográfico da escarpa na província de Benguela, Angola, revelou ser mais relacionado com A. bogerti do que com A. wulfhaackei. As diferenças entre estas duas espécies são mais subtis, muito embora as novas espécies axibam maior número de escamas a meio do corpo (79.5 em vez de 74.8), diferente coloração dorsal e escamas supranasais sempre em contacto (em vez de apenas em contacto em 57%).
endemism, flat geckos, Gekkonidae, Reptilia, speciation, Palavras-chave, endemismo, especiação, Gekkonidae, Osga-achatada, Reptilia
African flat geckos Afroedura Loveridge, 1944 currently comprise 32 species (
Until recently, only three species of Afroedura had been recorded from Namibia and Angola, namely A. africana (Boulenger, 1888), A. tirasensis Haacke, 1965 and A. bogerti Loveridge, 1944. However, a recent revision of Angolan material of the A. bogerti-group (
Unfortunately, the status of historical records of A. bogerti from northern Namibia (see
The material used in
Afroedura specimens with generalised localities and GenBank accession numbers of vouchers used in this study. *Additional samples added during this study. ANG/AG – William R. Branch field numbers; CHL – Colecção Herpetológica do Lubango (CHL), Instituto Superior de Ciências de Educação da Huíla (ISCED-Huíla), Angola; FKH – Fundação Kissama, Luanda, Angola; JLRZC – Javier Lobón-Rovira field numbers; KTH – Krystal Tolley field numbers; NB – Ninda Baptista field numbers;
Species | Locality | Sample Number | Museum Number | 16S | 12S | c-mos | RAG1 | Cyt-b | ND2 |
---|---|---|---|---|---|---|---|---|---|
A. praedicta | Serra da Neve, Angola | NB 853 | ZMB 91607 | MW354010 | OP653587 | OP686766 | OP686640 | OP686714 | OP686613 |
A. praedicta | Serra da Neve, Angola | NB 854 | CHL 854 | MW354011 | OP653588 | OP686767 | OP686641 | OP686715 | OP686614 |
A. praedicta | Serra da Neve, Angola | NB 855 | CHL 855 | MW354012 | OP653589 | OP686768 | OP686642 | NA | OP686615 |
A. otjihipa sp. nov. | Otjihipa, Namibia | SMR 11182* |
|
OP653544 | NA | OP686789 | OP686638 | NA | OP686623 |
A. otjihipa sp. nov. | Otjihipa, Namibia | SMR 11183* |
|
OP653545 | NA | OP686790 | OP686639 | NA | OP686624 |
A. donveae | Omauha Lodge, Angola | E259.17/KTH09-196 | PEM R17936 | LM993776 | OP653553 | OP686732 | OP686633 | NA | OP686594 |
A. donveae | Omauha Lodge, Angola | E259.18/KTH09-197 | PEM R17937 | LM993777 | OP653554 | OP686733 | OP686634 | NA | OP686595 |
A. donveae | Omauha Lodge, Angola | P9-284 | Na | MW354008 | OP653602 | OP686780 | OP686635 | NA | OP686621 |
A. donveae | Omauha Lodge, Angola | P9-285 | Na | MW354009 | OP653603 | OP686781 | OP686636 | NA | OP686622 |
A. vazpintorum SC1 | 52 km north on tar road on road to Lucira, Angola | E259.12/ANG 311 | PEM R21596 | MF565461 | OP653548 | OP686727 | OP686644 | OP686685 | NA |
A. vazpintorum SC1 | 1 km east of Farm Mucungo, Angola | E259.13/AG 138 | PEM R24115 | MF565463 | OP653549 | OP686728 | OP686645 | OP686686 | OP686590 |
A. vazpintorum SC1 | 1 km east of Farm Mucungo, Angola | E259.14/AG 137 | PEM R24114 | MF565460 | OP653550 | OP686729 | OP686646 | OP686687 | OP686591 |
A. vazpintorum SC1 | 1 km east of Farm Mucungo, Angola | E259.15/AG 141 | PEM R24118 | MF565462 | OP653551 | OP686730 | OP686647 | OP686688 | OP686592 |
A. vazpintorum SC1 | 10.4 km south of Rio Mucungo on tar road to Bentiaba, Angola | E260.12/samp39 | Na | MF565459 | OP653560 | OP686739 | OP686650 | OP686693 | OP686598 |
A. vazpintorum SC1 | 10.4 km south of Rio Mucungo on tar road to Bentiaba, Angola | E260.13/samp57 | PEM R24203 | MF565458 | OP653561 | OP686740 | OP686651 | OP686694 | OP686599 |
A. vazpintorum SC1 | 10.4 km south of Rio Mucungo on tar road to Bentiaba, Angola | E260.14/samp58 | PEM R24204 | MF565457 | OP653562 | OP686741 | OP686652 | OP686695 | OP686600 |
A. vazpintorum SC1 | 20 km south Bentiaba, Angola | E260.15/samp62 | PEM R24219 | MF565456 | OP653563 | OP686742 | OP686653 | NA | OP686601 |
A. vazpintorum SC1 | approx. 18 km E Lucira, Angola | NB 834 | CHL 834 | MW354019 | OP653585 | OP686764 | OP686658 | OP686712 | OP686611 |
A. vazpintorum SC1 | approx. 18 km E Lucira, Angola | NB 835 | CHL 835 | MW354020 | OP653586 | OP686765 | OP686659 | OP686713 | OP686612 |
A. vazpintorum SC1 | Mariquita, Angola | P9-154 | Na | MW354018 | OP653601 | OP686779 | OP686666 | NA | NA |
A. vazpintorum SC1 | 50 km east Namibe on main tar road to Leba, Angola | E259.16/ANG 289 | PEM R21595 | MF565454 | OP653552 | OP686731 | OP686648 | NA | OP686593 |
A. vazpintorum SC1 | Bimbe, Estação Zootecnica, Angola | NB 743 | CHL 743 | MW354017 | OP653578 | OP686757 | OP686654 | NA | OP686607 |
A. vazpintorum SC1 | Tundavala, Angola | P0-103* | Na | OP653527 | OP653590 | OP686769 | OP686660 | NA | OP686616 |
A. vazpintorum SC1 | Tundavala, Angola | P0-104* | FKH-0518 | OP653528 | OP653591 | NA | OP686661 | NA | OP686617 |
A. vazpintorum SC1 | Meva Beach, Angola | E259.9/samp30 | PEM R22488 | MF565455 | OP653556 | OP686735 | OP686649 | NA | NA |
A. vazpintorum SC1 | Carivo, Angola | P8-19 | Na | MW354015 | OP653598 | OP686776 | OP686664 | NA | OP686620 |
A. vazpintorum SC1 | Carivo, Angola | P8-20 | Na | MW354016 | OP653599 | OP686777 | OP686665 | NA | NA |
A. vazpintorum SC2 | Bimbe, Estação Zootecnica, Angola | NB 744* | CHL 744 | OP653529 | OP653579 | OP686758 | OP686655 | OP686707 | OP686608 |
A. vazpintorum SC2 | Bimbe, Estação Zootecnica, Angola | NB 745 | CHL 745 | MW354013 | OP653580 | OP686759 | OP686656 | OP686708 | OP686609 |
A. vazpintorum SC2 | Bimbe, Estação Zootecnica, Angola | NB 746 | CHL 746 | MW354014 | OP653581 | OP686760 | OP686657 | OP686709 | OP686610 |
A. vazpintorum SC2 | Tchivinguiro, Angola | P0-97* | FKH0514 | OP653530 | OP653596 | OP686774 | OP686662 | OP686716 | OP686618 |
A. vazpintorum SC2 | Tchivinguiro, Angola | P0-98* | FKH0515 | OP653531 | OP653597 | OP686775 | OP686663 | OP686717 | OP686619 |
A. pundomontana sp. nov. | Alto Pundo – Bocoio, Angola | WC-6524* | PEM R24743 | OP653543 | NA | OP686791 | OP686643 | NA | OP686625 |
A. pundomontana sp. nov. | Alto Pundo – Bocoio, Angola | P1-280* | FKH0688 | OP653532 | OP653607 | OP686785 | NA | OP686722 | NA |
A. pundomontana sp. nov. | Alto Pundo – Bocoio, Angola | P1-281* | FKH0689 | OP653533 | OP653608 | OP686786 | NA | OP686723 | NA |
A. pundomontana sp. nov. | Alto Pundo – Bocoio, Angola | P1-282* | FKH0690 | OP653534 | OP653609 | OP686787 | NA | OP686724 | NA |
A. bogerti | Farm Namba , Angola | E260.1/samp23 | PEM R24184 | MF565467 | OP653557 | OP686736 | OP686626 | OP686690 | OP686597 |
A. bogerti | Farm Namba, Angola | E260.2/samp24 | PEM R24185 | MF565468 | OP653568 | OP686747 | OP686627 | OP686700 | OP686602 |
A. bogerti | Farm Namba, Angola | E260.3/samp25 | PEM R24186 | MF565466 | OP653569 | OP686748 | OP686628 | OP686701 | OP686603 |
A. bogerti | 400 m north of Mission de Namba grounds, Angola | E260.4/samp27 | PEM R24187 | MF565465 | OP653570 | OP686749 | OP686629 | NA | OP686604 |
A. bogerti | 400 m north of Mission de Namba grounds, Angola | E260.5/samp28 | Na | MF565464 | OP653571 | OP686750 | OP686630 | OP686702 | OP686605 |
A. bogerti | Namba, Angola | JLRZC0015 | Na | MW354021 | P653576 | OP686755 | OP686631 | NA | NA |
A. bogerti | Namba, Angola | JLRZC0016 | Na | MW354022 | OP653577 | OP686756 | OP686632 | NA | OP686606 |
A. bogerti | Namba, Angola | P1-286* | Na | OP653535 | OP653610 | OP686788 | NA | NA | NA |
A. wulfhaackei SC1 | Farm Victoria-Verdun, 2 km S of Mt. Sandula, Angola | E260.6/samp31 | Na | MF565470 | OP653572 | OP686751 | OP686675 | OP686703 | NA |
A. wulfhaackei SC1 | Farm Victoria-Verdun, 2 km S of Mt. Sandula, Angola | E260.7/samp32 | Na | MF565469 | OP653573 | OP686752 | OP686676 | OP686704 | NA |
A. wulfhaackei SC1 | Farm Victoria-Verdun, 2 km S of Mt. Sandula, Angola | E260.8/samp33 | PEM R24191 | MF565471 | OP653574 | OP686753 | OP686677 | OP686705 | NA |
A. wulfhaackei SC1 | Farm Victoria-Verdun, 2 km S of Mt. Sandula, Angola | E260.9/samp34 | PEM R24192 | MF565469 | OP653575 | OP686754 | OP686678 | OP686706 | NA |
A. wulfhaackei SC1 | Sandula, Angola | P9-141 | MW354023 | OP653600 | OP686778 | OP686682 | OP686718 | NA | |
A. wulfhaackei SC1 | Moco - Kapa Kuito, Angola | P0-49* | FKH-0472 | OP653536 | OP653592 | OP686770 | NA | NA | NA |
A. wulfhaackei SC2 | 5 km southwest of Lepi, Angola | E260.11/samp37 | PEM R24201 | MF565472 | OP653559 | OP686738 | OP686670 | OP686692 | NA |
A. wulfhaackei SC2 | Lepi, Angola | P1-162* | FKH-0593 | OP653537 | OP653604 | OP686782 | NA | OP686719 | NA |
A. wulfhaackei SC2 | Lepi, Angola | P1-163* | FKH-0594 | OP653538 | OP653605 | OP686783 | NA | OP686720 | NA |
A. wulfhaackei SC2 | Lepi, Angola | P1-164* | FKH-0595 | O653539 | OP653606 | OP686784 | NA | OP686721 | NA |
A. wulfhaackei SC3 | Candumbo Rocks Memorial, Angola | E259.10/WC-4037 | PEM R22490 | MF565474 | OP653546 | OP686725 | OP686667 | OP686683 | NA |
A. wulfhaackei SC3 | Candumbo Rocks Memorial, Angola | E259.11/WC-4038 | PEM R22491 | MF565475 | OP653547 | OP686726 | OP686668 | OP686684 | NA |
A. wulfhaackei SC3 | Candumbo Rocks Memorial, Angola | E260.10/samp35 | PEM R24200 | MF565473 | OP653558 | OP686737 | OP686669 | OP686691 | NA |
A. wulfhaackei SC4 | Maka-Mombolo, north-east of Balombo, Angola | E260.16/samp70 | PEM R24236 | MF565476 | OP653564 | OP686743 | OP686671 | OP686696 | NA |
A. wulfhaackei SC4 | 5 km west of Maka-Mombolo, Angola | E260.17/samp71 | PEM R24232 | MF565477 | OP653565 | OP686744 | OP686672 | OP686697 | NA |
A. wulfhaackei SC4 | 5 km west of Maka-Mombolo, Angola | E260.18/samp72 | PEM R24233 | MF565478 | OP653566 | OP686745 | OP686673 | OP686698 | NA |
A. wulfhaackei SC4 | 5 km west of Maka-Mombolo, Angola | E260.19/samp73 | PEM R24234 | MF565479 | OP653567 | OP686746 | OP686674 | OP686699 | NA |
A. wulfhaackei SC4 | Morro do Moco, camp near Canjonde, Angola | NB 817 | CHL 817 | MW354024 | OP653582 | OP686761 | OP686679 | OP686710 | NA |
A. wulfhaackei SC4 | Morro do Moco, camp near Canjonde, Angola | NB 818 | CHL 818 | MW354025 | OP653583 | OP686762 | OP686680 | OP686711 | NA |
A. wulfhaackei SC4 | Morro do Moco, camp near Canjonde, Angola | NB 819 | CHL 819 | MW354026 | OP653584 | OP686763 | OP686681 | NA | NA |
A. wulfhaackei SC4 | Moco - Kapa Kuito, Angola | P0-50* | FKH-0473 | OP653540 | OP653593 | OP686771 | NA | NA | NA |
A. wulfhaackei SC4 | Moco - Kapa Kuito, Angola | P0-51* | FKH-0474 | OP653541 | OP653594 | OP686772 | NA | NA | NA |
A. wulfhaackei SC4 | Moco - Kapa Kuito, Angola | P0-52* | FKH-0475 | OP653542 | OP653595 | OP686773 | NA | NA | NA |
A. loveridgei | Near Moatize, Tete Province, Mozambique | EI 123 | MF565446 | OP653555 | OP686734 | OP686637 | OP686689 | OP686596 | |
A. karroica (outgroup) | Eastern Cape Province, 41km SE Murraysburg, South Africa | PEM FN1112 | LM993744 | NA | JQ945523 | KM073485 | NA | JX041302 |
All occurrence records (coloured circles) and predicted distribution for the Afroedura bogerti group from southwestern Africa. No predicted distribution could be created for A. otjihipa sp. nov. Angolan provinces and Namibian regions are labelled accordingly. Stars represent the respective type localities and black dots with white borders represent localities used in the phylogenetic analysis.
Total genomic DNA for the new samples was extracted from tissue samples using the E.Z.N.A. Tissue DNA Kit (VWR/Omega bio-tek) and the Qiagen DNeasy Tissue Kit, following the manufacturer’s protocols. The following genes were amplified: two partial mitochondrial ribosomal genes (ribosomal ribonucleic acid [12S and 16S]), two partial mitochondrial genes (cytochrome b [Cyt-b] and NADH-dehydrogenase subunit 2 [ND2]) and two partial nuclear gene (oocyte maturation factor [c-mos] and recombination activating protein [RAG1]). Respective primers and reference to PCR protocols are given in Table
The primers and final sequence lengths for the two nuclear genes and four mitochondrial genes used in this study.
Gene | Sequence length (bp) | Primer | Sequence (5’ -> 3’) | Reference |
---|---|---|---|---|
16S | 594 | 16Sa | CGC CTG TTT ATC AAA AAC AT |
|
16Sb | CCG GTC TGA ACT CAG ATC ACG T |
|
||
C-mos | 399 | CmosG73 | GCG GTA AAG CAG GTG AAG AAA |
|
CmosG74 | TGA GCA TCC AAA GTC TCC AAT C |
|
||
Cyt-b | 1008 | CytBL14910 | GAC CTG TGA TMT GAA AAC CAY CGT TGT |
|
CytBH16064 | CTT TGG TTT ACA AGA ACA ATG CTT TA |
|
||
RAG1 | 639 | RAG1F700 | GGA GAC ATG GAC ACA ATC CAT CCT AC |
|
RAG1R700 | TTT GTA CTG AGA TGG ATC TTT TTG CA |
|
||
ND2 | 1014 | ND2L4437R | AAG CTT TCG GGC CCA TAC C |
|
ND2H5540F | TTT AGG GCT TTG AAG GC |
|
||
ND2R102 | CAG CCT AGG TGG GCG ATT G |
|
||
12S | 437 | 12sf700 | AAA CTG GGA TTA GAT ACC CCA CTA T |
|
12sr600 | GAG GGT GAC GGC GGT GTG T |
|
Sequences were checked for reliability using the original chromatograph data in the program BioEdit v.7.2.5 (
Two techniques for phylogenetic estimation were applied: Bayesian Inference (BI) using MrBayes v.3.26 (
Partition schemes and models of substitution for the Bayesian (PP) and maximum-likelihood (ML) calculations.
Substitution model | Included partitions | |
---|---|---|
1 | GTR + I + G | 12S, 16S, ND2 (P1), Cyt-b (P1) |
2 | HKY + I | RAG1 (P1, P2, P3), c-mos (P1, P2. P3) |
3 | HKY + I + G | ND2 (P2), Cyt-b (P2) |
4 | TrN + G | ND2 (P3), Cyt-b (P3) |
Support values for the two phylogenetic approaches were calculated. Bootstrap analyses (BS) with 50000 ultrafast bootstraps evaluated the relative branch support in the ML analysis. As we used the ultrafast bootstrap option, only clades with support ≥ 95% were considered strongly supported. Bayesian analyses were run under partitioned schemes for 50 million generations with four chains sampled every 1000 generations, with a burn-in of 10000 trees. Clades with posterior probabilities (PP) ≥ 0.95 were considered strongly supported. Convergence and mixing of the parameters for each run of the Bayes analysis was checked with the Effective Samples Size (ESS) using Tracer v.1.72 (
We examined newly collected material in the collections of the National Museum of Namibia (
The following measurements were taken in millimeters (mm) using a digital calliper (accuracy of 0.01 mm) with the aid of a Nikon SMZ1270 dissecting microscope: 1) snout-vent length (SVL – from the tip of the snout to the cloaca with the gecko flattened on its back), 2) tail length (TL, only original tails were measured); 3) head length (HL – tip of snout to retro-articular process of jaw); 4) head width (HW – widest point of head approximately at the level of eyes); 5) snout length (SL – tip of snout to front of orbit); 6) eye diameter (ED – measured in horizontal orientation); 7) ear to eye length (EE – top edge of earhole to back of eye); 8) ear opening (EO – greatest length); and 9) internostril distance (IN – shortest distance between nostrils). All head measurements were done on the right side of the head.
Due to the low number of occurrence records we produce predicted distribution maps for each species in the A. bogerti-group by performing species distribution models (SDM) based on suitable bioclimatic areas using Maxent (
Molecular analyses concur with previously published results on the Angolan members of the genus Afroedura (
Summary of intra- and interclade uncorrected pairwise sequence divergences (%) for specimens of Afroedura clades compared to A. loveridgei for 16S rRNA. Interclade distances below 5% (see the relevant discussion in the main text) are marked in bold. SC – subclades.
Intraclade distances | A. loveridgei | A. bogerti | A. donveae | A. praedicta | A. pundomontana sp. nov. | A. otjihipa sp. nov. | A. vazpintorum SC1 | A. vazpintorum SC2 | A. wulfhaackei SC1 | A. wulfhaackei SC2 | A. wulfhaackei SC3 | A. wulfhaackei SC4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A. loveridgei | - | - | |||||||||||
A. bogerti | 0.2 | 17.2 | - | ||||||||||
A. donveae | 0.1 | 19.6 | 10.7 | - | |||||||||
A. praedicta | 0.7 | 17.5 | 8.8 | 6.5 | - | ||||||||
A. pundomontana sp. nov. | 0.1 | 17.8 | 7.8 | 12.1 | 11.0 | - | |||||||
A. otjihipa sp. nov. | 0.0 | 17.3 | 11.0 | 7.4 | 7.9 | 13.1 | - | ||||||
A. vazpintorum SC1 | 2.2 | 18.0 | 11.0 | 8.8 | 8.4 | 11.6 | 11.8 | - | |||||
A. vazpintorum SC2 | 1.0 | 17.3 | 9.5 | 8.9 | 7.6 | 10.6 | 10.9 | 4.6 | - | ||||
A. wulfhaackei SC1 | 0.1 | 14.9 | 6.4 | 10.0 | 9.6 | 9.3 | 11.2 | 10.5 | 9.9 | - | |||
A. wulfhaackei SC2 | 0.1 | 15.5 | 6.7 | 10.2 | 9.1 | 9.6 | 10.7 | 10.5 | 9.1 | 3.6 | - | ||
A. wulfhaackei SC3 | 0.2 | 13.3 | 7.2 | 10.4 | 9.6 | 10.1 | 10.3 | 11.8 | 1.0 | 4.3 | 3.7 | - | |
A. wulfhaackei SC4 | 0.4 | 14.1 | 5.9 | 9.4 | 8.7 | 8.4 | 10.0 | 10.5 | 9.9 | 4.0 | 3.4 | 3.7 | - |
Phylogenetic tree topology based on the combined mitochondrial (12S, 16S, Cyt-b, ND2) and nuclear (c-mos, RAG1) genes, using Afroedura karroica as outgroup. Support values for Bayesian posterior probabilities (above nodes) and maximum likelihood bootstraps (below nodes) are indicated in the tree (shown values: ML: ≥ 70% / PP: ≥ 0.75).
The addition of newly sequenced specimens from A. wulfhaackei subclade 2 (Afroedura sp. 6 sensu
Results for the morphological comparisons are summarised in Table
Summary of morphological data for Afroedura bogerti, A. wulfhaackei (including members of the morphologically-indistinguishable subclades), A. donveae, A. vazpintorum (including isolated escarpment population), A. praedicta, A. pundomontana sp. nov. and A. otjihipa sp. nov. Values are given as a range with mean in parenthesis for scalation and mean ± standard deviation for meristic ratios. M = male, F = female, n = sample size.
Character | A. bogerti | A. wulfhaackei | A. donveae | A. vazpintorum | A. praedicta | A. pundomontana sp. nov. | A. otjihipa sp. nov. |
---|---|---|---|---|---|---|---|
(n = 9) | (n = 35) | (n = 17) | (n = 48) | (n = 5) | (n = 7) | (n = 2) | |
Snout vent length (maximum) | M 50 mm | M 60 mm | M 59.6 mm | M 58 mm | M 52 mm | M 58 mm | M 60 mm |
F 54 mm | F 59 mm | F 65 mm | F 59 mm | F 51 mm | F 58 mm | F 58 mm | |
Head Length/Head Width | 1.3 ± 0.09 | 1.4 ± 0.14 | 1.4 ± 0.08 | 1.3 ± 0.13 | 1.3 ± 0.14 | 1.3 ± 0.14 | 1.1 ± 0.12 |
Snout Length/Eye Distance | 1.6 ± 0.34 | 2.0 ± 0.20 | 2.0 ± 0.19 | 1.8 ± 0.29 | 1.7 ± 0.19 | 2.0 ± 0.96 | 1.7 ± 0.12 |
Snout Length/Eye-Ear Distance | 1.2 ± 0.07 | 1.2 ± 0.14 | 1.3 ± 0.30 | 1.2 ± 0.17 | 1.1 ± 0.09 | 1.2 ± 0.30 | 1.1 ± 0.06 |
Precloacal pores (males only) | 8 (n = 1) | 9–11 (9.5) (n = 12) | 11–12 (11.5) (n = 4) | 9–11 (10.2) (n = 12) | 8 (8.0) (n = 3) | 12 (n = 1) | 12 (n = 1) |
Ventral rows per tail verticil | 4 (4.0) | 4 (4.0) | 5–6 (5.5) | 5–7 (5.0) | 4 (4.0) | 4–5 (4.4) | 5 |
Dorsal rows per tail verticil | 5 (5.0) | 5–6 (5.0) | 6–7 (6.6) | 6–7 (6.1) | 5 (5.0) | 5–6 (5.6) | 6 |
Scales below 4th toe | 6–9 (6.9) | 6–9 (7.3) | 6–8 (7.7) | 6–10 (8.0) | 9–11 (9.6) | 7–9 (7.7) | 8 |
Mid-body scale rows | 69–77 (73.5) | 73–88 (79.5) | 64–78 (72.8) | 73–86 (80.3) | 73–78 (74.8) | 78–82 (79.5) | 65–67 |
Scales between eyes | 11–14 (12.4) | 11–16 (13.7) | 11–14 (11.0) | 11–15 (13.1) | 12–15 (13.5) | 13–15 (13.9) | 14 |
Scales: nostril to eye | 8–12 (9.9) | 7–10 (8.3) | 8–11 (9.3) | 7–11 (9.1) | 9–10 (10.2) | 10–13 (10.9) | 10–11 |
Scales: ear to eye | 14–16 (15.4) | 12–18 (15.90) | 11–14 (11.9) | 13–17 (15.6) | 13–16 (14.8) | 16–19 (16.9) | 12–13 |
Supranasals in contact | 33% | 57% | 100% | 100% | 100% | 100% | 100% |
Supralabials | 8–10 (8.4) | 7–9 (8.2) | 8–10 (9.0) | 8–10 (8.8) | 8–10 (9.2) | 8–9 (8.7) | 8–9 |
Infralabials | 8–9 (8.3) | 8–9 (8.3) | 8–11 (9.3) | 8–9 (9.1) | 8–9 (8.5) | 9 (9.0) | 8–9 |
Both genetics and morphology, as well as geographical separation, suggest that the Afroedura sp. 1 from Bocoio, Angola and Afroedura sp. 2 from Otjihipa, Namibia populations should both be regarded as new species. We apply the general lineage-based species concept, treating all populations that represent independent historical lineages supported by multiple different lines of evidence as separate species (
According to
Afroedura bogerti –
Afroedura wulfhaackei –
PEM R24743, adult female, collected at Morro do Pundo, about 25 km west of Bocoio (-12.44389, 13.92250; 946 m a.s.l.), Benguela Province, Angola by Pedro Vaz Pinto on 6 June 2018.
(six specimens). *TM 46587–8, TM 465890, adult females, collected 30 km W of Sousa Lara [= Bocoio] (approx. -12.40689, 13.90400; 670 m a.s.l.), Benguela Province, Angola by Wulf Haacke on 28 May 1974; *TM 46589, adult male, collected 30 km W of Sousa Lara [= Bocoio] (approx. -12.40689, 13.90400; 670 m a.s.l.), Benguela Province, Angola, by Wulf Haacke on 28 May 1974; FKH 0688, FKH 0689, adult females, collected from Alto Pundo – Bocoio (-12.44367, 13.92072, 920 m a.s.l.), Benguela Province, Angola by Pedro Vaz Pinto and Afonso Vaz Pinto on 2 September 2021. *Note the locality data presented as ‘3 km west of Bocoio, Benguela Province (12°28'58.0"S, 14°06'24.8"E)’ in
The new species is named in reference to the area where it was found. The region lies on top of a ridge known as Morro do Pundo that translates to the ‘Hills’ or ‘Mountain’ of the Baboons. The name thus comprises two parts: pundo (= baboon) and montana (= mountain).
A member of the greater ‘transvaalica’ group, possessing two pairs of enlarged scansors per digit, and a strongly verticillate and flattened tail (
Afroedura pundomontana sp. nov. differs from other members of the A. bogerti group by a combination of the following characteristics (see Tables
Live specimens of: A–B. Afroedura bogerti (A. P1-286, not vouchered; B. JLRZC0015, not vouchered) from Serra da Namba, Cuanza Sul Province, Angola; C–D. Afroedura pundomontana sp. nov. (FKH0689) from Morro do Pundo, Benguela Province, Angola. Photos: A, C, D. Pedro Vaz Pinto; B. Javier Lobón-Rovira.
Adult male; SVL 46.0 mm; tail 42.3 mm (detached full original tail). Small mid-ventral incision for removal of liver sample. Measurements and meristic characters of holotype are presented in Table
Measurements (in mm) and scale counts for the type series of Afroedura pundomontana sp. nov.
Catalogue Number | PEM R24743 | TM 46587 | TM 46588 | TM 46589 | TM 46590 | FKH0688 | FKH0689 |
---|---|---|---|---|---|---|---|
Type Status | Holotype | Paratype | Paratype | Paratype | Paratype | Paratype | Paratype |
Sex | Female | Female | Female | Male | Female | Female | Female |
Snout-vent length | 46.0 | 57.8 | 43.4 | 57.8 | 53.4 | 54.4 | 57.1 |
Tail length | 42.3 | 61.5 | – | 44.1 | 47.33 | – | 47.1 |
Tail condition | Original | Original | Truncated | Regenerated | Truncated | Truncated | Partly Regenerated |
Head length | 12.5 | 13.0 | 10.6 | 13.3 | 12.7 | 13.1 | 15.0 |
Head width | 8.3 | 10.3 | 8.3 | 11.2 | 10.1 | 10.6 | 11.9 |
Snout length | 4.9 | 5.1 | 4.1 | 4.5 | 5.0 | 4.6 | 4.8 |
Eye distance | 2.6 | 3.5 | 3.1 | 3.7 | 4.0 | 2.6 | 2.5 |
Eye-Ear distance | 3.8 | 4.5 | 3.5 | 4.7 | 3.7 | 4.4 | 4.3 |
Precloacal pores (males) | – | – | – | 12 | – | – | – |
Dorsal rows per tail verticil | 4 | 4 | 5 | – | 4 | – | 5 |
Ventral rows per tail verticil | 6 | 5 | 6 | – | 5 | – | 6 |
Scales below 4th toe | 7 | 8 | 9 | 8 | 8 | 7 | 7 |
Midbody scale rows | 83 | 81 | 78 | 82 | 78 | 78 | 80 |
Scales between eyes | 14 | 14 | 13 | 13 | 13 | 15 | 15 |
Scales: nostril to eye | 11 | 10 | 10 | 10 | 11 | 12 | 13 |
Scales: ear to eye | 18 | 15 | 16 | 16 | 16 | 19 | 18 |
Supranasals in contact | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Supralabials | 8 | ? | ? | ? | ? | 9 | 9 |
Infralabials | 9 | ? | ? | ? | ? | 9 | 9 |
(see Table
In life
(holotype PEM R24743 [similar to Fig.
(Fig.
This species is currently known only from central Benguela Province, Angola (Fig.
Afroedura cf. bogerti –
The new species is named in reference to the area it was collected, namely Otjihipa Mountains in northern Namibia.
A member of the greater ‘transvaalica’ group as it possesses two pairs of enlarged scansors per digit and a strongly verticillate and flattened tail (
Afroedura otjihipa sp. nov. differs from other members of the A. bogerti group by a combination of the following characteristics (see Tables
Adult female: SVL 57.9 mm; tail regenerated, with a small mid-ventral incision for the removal of liver sample. Measurements and meristic characters of holotype presented in Table
Measurements (in mm) and scale counts for the type series of Afroedura otjihipa sp. nov.
Catalogue Number |
|
|
Type Status | Holotype | Paratype |
Sex | Female | Male |
Snout-vent length | 57.9 | 59.9 |
Tail length | – | – |
Tail condition | Truncated | Regenerated |
Head length | 13.6 | 15.9 |
Head width | 13.2 | 13.3 |
Snout length | 5.7 | 6.0 |
Eye distance | 3.2 | 3.8 |
Eye-Ear distance | 4.8 | 5.4 |
Precloacal pores (males) | – | 12 |
Dorsal rows per tail verticil | 5 | 5 |
Ventral rows per tail verticil | 6 | 6 |
Scales below 4th toe | 8 | 8 |
Midbody scale rows | 67 | 65 |
Scales between eyes | 14 | 14 |
Scales: nostril to eye | 10 | 11 |
Scales: ear to eye | 12 | 13 |
Supranasals in contact | Yes | Yes |
Supralabials | 8 | 9 |
Infralabials | 9 | 8 |
SVL 59.9 mm adult male, tail truncated, precloacal pores 12. Measurements and meristic characters of paratype are presented in Table
In life
(holotype
A rupicolous species living in narrow rock crevices in relatively small sandstone outcrops in arid woodland savannah (Fig.
Currently known from a single sandstone ridge on Otjihipa Middleberg in the extreme north-west of the Kunene Region, Namibia (Fig.
1 | Midbody scale rows more than 95 | 2 |
– | Midbody scale rows less than 95; occurs in northern Namibia and Angola | 4 |
2 | Rostral usually bordering nostril | 3 |
– | Rostral usually excluded from nostril | A. loveridgei |
3 | Anterior nasals in contact (very rarely separated); scales around midbody: South Africa 102–118 (mean 109), northern Zimbabwe 108–119 (average 114) | A. transvaalica |
– | Anterior nasals separated by 1–3 granules; scales around midbody 99–101 (average 100) | A. gorongosa |
4 | Each tail verticil usually comprising 5 ventral and 6 dorsal rows of scales; anterior nasals always in contact; ventrum immaculate | 5 |
– | Each tail verticil usually comprising 4 ventral and 5 dorsal rows of scales; anterior nasals not always in contact; ventrum greyish with small black specks | 6 |
5 | Midbody scales 78–82 (mean 79.5) larger average adult size 57.1 mm SVL; precloacal pores 11–12 (mean 11.5) in males; bold colouration, black iris, occurs in Angola | A. donveae |
– | Midbody scales 65–67; larger average adult size 59.9 mm SVL; precloacal pores 12 in males; bold colouration, golden iris, occurs in Namibia | A. otjihipa sp. nov. |
– | Midbody scales 73–86 (mean 80.3); smaller average adult size 48.6 mm SVL; precloacal pores 9–11 (mean 10.2) in males; dull colouration | A. vazpintorum |
6 | Anterior nasals always in contact, restricted to first elevation step and isolated inselbergs below the Angolan escarpment | 7 |
– | Anterior nasals not always in contact, restricted to above the Angolan escarpment | 8 |
7 | Restricted to Serra de Neve Mountains, Namibe Province | A. praedicta |
– | Occurs on the first elevation step of the Angolan escarpment, Benguela Province | A. pundomontana sp. nov. |
8 | Midbody scales 69–77 (mean 73.5) | A. bogerti |
– | Midbody scales 76–88 (mean 79.3) | A. wulfhaackei |
The addition of newly collected material from northern Namibia and western Angola, as well as the inclusion of more genes, improved the phylogenetic support values and relationships between species. The topology recovered remained very similar to those found in
Afroedura is a genus of flat geckos that is restricted to rocky and mountainous habitat and inhabits both the eastern and western southern Africa escarpments, while the central Kalahari and Zambezi basin regions (generally fluvial lowlands and few or no mountains or inselbergs) appear to be devoid of these flat geckos (
The Afroedura bogerti-group is endemic to the central highlands and south-west coastal regions of Angola, with one species endemic to the Otjihipa Mountains, south of the Kunene River, in the northern Kunene region of Namibia. This group does not extend further south into the Namibian portion of the western escarpment. The only other species of Afroedura known to occur intermittently along the highlands of Namibia are taxa in the A. africana-group, which are closely related to South African species, and A. tirasensis, the phylogenetic relationship of which is still unknown (
Our results show that the Afroedura bogerti-group speciation is driven by the complex landscape mosaic of rocky/mountainous and flat lowland habitats, under the influence of the steep climatic gradient characteristic of the Angolan escarpment region and exacerbated by Pleistocene climatic events. The basal split in the group is between the clade inhabiting higher rainfall mountains in the north-eastern extreme of its range (A. bogerti, A. pundomontana sp. nov. and A. wulfhaackei), and the clade inhabiting the predominantly more arid coastal regions in the southwest (A. donveae, A. praedicta, A. otjihipa sp. nov. and A. vazpintorum). This could be associated by a major ecological landscape transformation, such as with the expansion of C4 grasslands, which occurred in the period between 2.0 and 1.75 Mya, and which has led to strong evolutionary pressure and species turnover in other African fauna (
The basal split within the inland highland lineages (A. bogerti + A. wulfhaackei + A. pundomontana sp. nov.) is between the strictly higher-lying inland species (A. wulfhaackei) and the subgroup formed by A. bogerti + A. pundomontana sp. nov. The latter subgroup further split into northern (A. bogerti) and western (A. pundomontana sp. nov.), lineages, currently present on an isolated mountain to the north and on the intermediate elevational step of the central escarpment, respectively. Although nominotypical A. bogerti is currently only known to occur at Namba Mountain, and is geographically and ecologically closer to some populations of A. wulfhaackei, the genetic results suggest a past link maintained along the Angolan western escarpment. Namba Mountain is unique in containing more extensive forested habitats than any other Angolan highland, and clear phylogenetic relationships between Namba and the western escarpment have been revealed in various faunistic groups, such as rupicolous dwarf toads of the genus Poyntonophrynus (Baptista et al. in prep.). More recently, several A. wulfhaackei populations may have become isolated on scattered mountain tops or granitic outcrops in the central highlands, leading to the evolution of the four subclades already identified. This study suggests that these subclades are a consequence of an ongoing incipient speciation process. Moreover, the habitat, ecological niche and morphological conservatism, seem to be consistent with non-adaptive radiation, similar to what has been reported for other reptile radiations (e.g.
On the other hand, the south-western lineages (A. donveae + A. praedicta + A. otjihipa sp. nov. + A. vazpintorum) have a more complex history of contraction, recolonisation and secondary contact, probably due to climatic changes exerted on a dynamic and highly heterogeneous landscape. The former three species seem very localised in their distributions, with high levels of specialisation. Afroedura praedicta and A. otjihipa sp. nov. are present only on two inselbergs separated by over 400 km of arid lowlands, contrasting with A. donveae, which occurs in the Angolan Kaokoveld desert and is the only species within the southwestern lineages, exclusively found in lowlands. While A. donveae and A. praedicta are associated with isolated large granite boulders, A. otjihipa sp. nov. lives among small rocks and vegetation. This suggests that the speciation of this group was likely caused by vicariance following the severe contraction of a once widespread ancestral taxon. Geographically intermediate populations between northern A. praedicta and southern A. donveae likely disappeared in response to extreme climatic and habitat changes, creating a large unoccupied area in between, while A. otjihipa sp. nov. may reflect a relatively recent colonisation (see Fig.
Although the southwestern regions of Angola include some dramatic and heterogeneous topographic features and may have experienced geomorphological transformation throughout the Pleistocene, such as the gradual escarpment uplift (
Many species occur in largely undisturbed remote areas with little human interference or development, and populations can therefore be considered stable. However, most species are range-restricted, and future developments could quickly change their conservation status. A steep climatic gradient influenced by a steep-sloped, west-falling escarpment and the influence of the Atlantic Ocean, may render these specialised and topographically-isolated, high-altitude habitats particularly sensitive to climate change. The impacts of climate change on species endemic to high elevation have been found to be disproportionately high (
We thank Instituto Nacional da Biodiversidade e Conservação (INBC) of the Ministry of Culture, Tourism and Environment (MCTE, Luanda, Angola), and especially the director of INBC, Dr Albertina Nzuzi, for issuing research export permits. We also thank Fernanda Lages and Vladimir Russo for co-ordinating institutional relationships and facilitating work authorisations, and Afonso Vaz Pinto for collecting efforts at Bocoio. We acknowledge the important role played by Rolf Becker, Ansie Bosman, Wessel Swanepoel and Vera De Cauwer in conceiving and organising the helicopter mountain-top surveys in Namibia and southern Angola, and Fernanda Lage and Vladimir Russo for co-ordinating institutional relationships and facilitating work authorisations in this regard. The SCIONA - Biodiversity Survey of Mountain Tops in the Kaokoveld Centre of Endemism was done in partnership with the Ministry of Culture, Tourism and Environment of the Republic of Angola and the Ministry of Environment, Forestry and Tourism of Namibia, and was funded by the European Union under grant agreement FED/2017/394-802. We thank Chad Keates for the generation of additional genes for newly collected material from northern Namibia, through the use of infrastructure and equipment provided by the NRF-SAIAB Aquatic Genomics Research Platform.. JLR were supported by Fundação para a Ciência e Tecnologia (FCT) and BIOPOLIS (PD/BD/140808/2018 and BIOPOLIS 2022-18, respectively). We thank Lemmy Mashini and Adriaan Jordaan for access to material housed in the Ditsong National Museum of Natural History (Pretoria, South Africa). This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Grant Agreement Number 857251 and by National Funds through FCT-Fundação para a Ciência e Tecnologia, under the scope of project UIDP/50027/2020.