Research Article
Print
Research Article
A new species of the genus Murina (Chiroptera, Vespertilionidae) from the Southeastern Qinghai-Tibetan Plateau, China
expand article infoPengfei Luo§, Mingle Mao, Chengrui Yan, Qingqing He§, Qin Yang, Huaiqing Deng, Ning Xiao|, Jiang Zhou
‡ Guizhou Normal University, Guiyang, China
§ Beijing Forestry University, Beijing, China
| Guiyang Healthcare Vocational University, Guiyang, China
Open Access

Abstract

The tube-nosed bats (genus Murina) are small insectivorous mammals that are primarily distributed in South, East, and Southeast Asia. The Qinghai-Tibet Plateau (QTP) has long been an understudied region in bat surveys, especially for species of small arboreal bats, including Murina. In 2023, we surveyed the southeastern QTP and collected seven individual specimens of Murina. The specimens were identified using combined morphological and molecular data (the mitochondrial Cyt b gene). Phylogenetic analyses identified three unknown clades: Murina sp1, Murina sp2, and Murina sp3. Murina sp1 was most closely related to M. pluvialis, with a genetic distance of 0.09. Murina sp2 was most closely related to M. shuipuensis, with a genetic distance of 0.13, and Murina sp3 was most closely related to M. chrysochaetes, with a genetic distance of 0.15. All three species delimitation methods supported the partitioning of Murina sp1, Murina sp2, and Murina sp3. Herein, we describe a new species, Murina chayuensis sp. nov. (Murina sp1.), that is similar to M. annamitica and M. lorelieae. Owing to the limited number of specimens, Murina sp2 and Murina sp3 are not described in this study. Our results highlight the overlooked diversity of bats in the southeastern QTP, and thus this group warrants further surveys and taxonomic studies.

Key Words

Cyt b, morphology, taxonomy, tube-nosed bats

Introduction

The genus Murina Gray, 1842 (Chiroptera: Vespertilionidae) is characterized by tubular nostrils and the back of the interfemoral membrane being covered with hair. The species occur in South, East, and Southeast Asia, including Vietnam, Laos, Malaysia, India, China, and others (Wilson and Mittermeier 2019). Historically, Murina species have been infrequently documented in systematic collections and seldom observed in the wild (Csorba and Bates 2005). Nevertheless, significant advances in the taxonomy of Murina bats have been made through the extensive use of harp traps, re-evaluation of morphological and cranial characteristics, and species delimitations based on DNA barcoding and acoustic data (Francis et al. 2010). Over the last two decades, 23 new species of Murina have been described (Simmons 2005; Wilson and Mittermeier 2019; Yu et al. 2020; Mou et al. 2024; Wang et al. 2024), with 12 Murina species identified in southern China: M. bicolor, M. gracilis, M. recondita, M. chrysochaetes, M. lorelieae, M. shuipuensis, M. fanjingshanensis, M. rongjiangensis, M. liboensis, M. jinchui, M. yuanyang, and M. yushuensis (Kuo et al. 2009; Eger and Lim 2011; He et al. 2015; Chen et al. 2017; Zeng et al. 2018; Yu et al. 2020; Mou et al. 2024; Wang et al. 2024).

Mountainous regions, although covering only approximately one-eighth of the Earth’s land surface, host nearly one-third of global terrestrial species (Spehn et al. 2012; Rahbek et al. 2019). The Qinghai-Tibet Plateau (QTP), famously dubbed “the roof of the world,” is the highest, most extensive, and youngest massif (Zhang et al. 2002). Recognized as a global biodiversity hotspot (Myers et al. 2000), the QTP harbors 250 species of mammals from 30 families, including first-category protected species such as Equus kiang, Moschus chrysogaster, and Bos mutus (Huang et al. 2008). Despite this rich biodiversity, bats (Chiroptera), a group second only to rodents (Rodentia) in mammalian species diversity (Wilson and Mittermeier 2019), account for only one-tenth of the region’s recorded species (Feng et al. 1986; Huang et al. 2008).

To gain a comprehensive view of the distribution and diversity of bats within the QTP, we surveyed the region, obtaining seven individual specimens of Murina from the southeastern QTP. These specimens represented three distinct taxonomic units and exhibited notable dissimilarities in appearance compared with other species of Murina found in China. Because only one specimen was available for each of Murina sp2 and Murina sp3, in this study, we describe only Murina sp1.

Materials and methods

Sample collection

In August 2023, seven specimens were collected in Chayu County (28°29'51.12"N, 97°0'53.87"E, 1511 m above sea level) and Luozha County (28°6'18.73"N, 91°7'22.40"E, 3292 m above sea level) using harp traps (Fig. 1). These specimens were significantly different from the Murina species known to occur in China based on morphological characteristics and fur color Six specimens collected from the mid-low elevation area of Chayu County were assigned to two putative new species (Murina sp1: XZ2023085, XZ2023086, XZ2023088, XZ2023100, and XZ2023107, and Murina sp2: XZ2023094). A specimen collected from Luozha County was assigned to a third putative new species (Murina sp3: XZ2023048). The bat specimens were preserved in anhydrous ethanol and stored at the Guizhou Normal University, Guiyang, China.

Figure 1. 

Occurrence of Murina species in the southeastern Qinghai-Tibetan Plateau and neighboring areas (the occurrence site data were downloaded from GBIF https://doi.org/10.15468/dl.s3mywg).

Phylogenetic analysis and species delimitation

To identify the bats, DNA was extracted from a small area of the wing membrane of each bat, followed by polymerase chain reaction (PCR) to amplify a portion of the mitochondrial cytochrome b gene (Cyt b) using the primers Cyt b-F (5′-TAG AAT ATC AGC TTT GGG TG-3′) and Cyt b-R (5′-AAA TCA CCG TTG TAC TTC AAC-3′) (Li et al. 2006). Each PCR was conducted in a 50 μl volume containing 8 μl of genomic DNA, 2 μl each of primers F and R (10 mM each), 13 μl of water, and 25 μl of HiFi DNA polymerase master mix. The PCR conditions were as follows: 5 min at 94 °C, followed by 10 cycles of 60 s at 94 °C, 30 s at 46 °C, and 62 s at 72 °C; 25 cycles of 60 s at 94 °C, 40 s at 50 °C (+0.3 °C/cycle), and 60 s at 72 °C; 35 cycles of 60 s at 94 °C, 40 s at 54 °C, 60 s at 72 °C, and final elongation for 10 min at 72 °C. All newly obtained sequences have been submitted to GenBank (Appendix 1).

We collected 40 Cyt b sequences from Murina species and relevant outgroups from NCBI for phylogenetic reconstruction in combination with the obtained sequences (Appendix 1). All sequences were aligned using MUSCLE in MEGA 7.0 (Edgar 2004; Kumar et al. 2016). Selection of the best-fit nucleotide substitution model was performed using MrMtgui (Ma 2016). MtMrgui was used to implement PAUP, ModelTest, and MrModelTest across platforms. The phylogenetic tree was constructed using Bayesian inference (BI) in MrBayes 3.2 (Ronquist et al. 2012). Genetic distances based on the Kimura 2-parameter model were estimated using Cyt b in MEGA 7.0 (Kumar et al. 2016).

Three molecular species delimitation methods were used to aid in species definitions. Assemble species by automatic partitioning (ASAP) enables rapid assessment of species boundaries based on sequence differences (Puillandre et al. 2021). Bayesian implementation of the Poisson tree process (bPTP) and multi-rate Poisson processes (mPTP) are two tree-based methods for defining species boundaries (Zhang et al. 2013; Kapli et al. 2017). First, we performed ASAP analyses using the ASAP online server (https://bioinfo.mnhn.fr/abi/public/asap/) with the Kimura distance model for the Cyt b sequences. We set the average ratio between transitions (ts) and transversions (tv) estimated using the Kimura 2-parameter model in MEGA 7.0 (Kimura 1980; Kumar et al. 2016), and then selected the best ASAP score to define the optimal number of species partitions. Second, the bPTP analysis was performed using the bPTP online server (https://species.h-its.org/). We ran 100,000 Markov chain Monte Carlo generations with a thinning of 100 and an initial burn-in of 10%. The input tree for the Cyt b gene was generated using MrBayes 3.2 (Ronquist et al. 2012). Finally, we employed mPTP using the online server at https://mptp.h-its.org/ based on the same input tree as for bPTP and default parameters.

Morphological analysis and measurements

External and craniodental measurements of the bats were taken using electronic digital calipers to the nearest 0.01 mm according to the method of Bates and Harrison (1997). Eight adult bats were examined in terms of the 15 measurements of Ruedi et al. (2012). Abbreviations for morphological characters are as follows: FA, forearm length; E, ear length; GTL, greatest length of skull; CBL, condylobasal length; CCL, condylo-canine length; ZYW, zygomatic width; IOW, interorbital width; BCW, braincase width; MAW, mastoid width; BCH, braincase height; CM3L, maxillary toothrow length; C1C1W, width across the upper canines; M3M3W, width across the upper molars; CM3L, mandibular toothrow length; and ML, mandible length. Morphologically similar and sympatric species were used for comparison (Appendix 2).

Results

Phylogenetic analysis and species delimitation

A BI tree for Murina was constructed based on the Cyt b gene (1041 bp). The tree mirrored the results from the study of Ruedi et al. (2012), with weak support for species relationships within Murina. The relationships between three putative new species and their sister taxa varied in support. Murina sp1. (Murina chayuensis sp. nov.) and Murina sp3 formed robust clades with M. pluvialis and M. chrysochaetes, respectively (BPP = 1.00), while the clade formed by Murina sp2 and M. shuipuensis had weaker support (BPP = 0.77) (Fig. 2). In addition, individuals of M. leucogaster were placed in two distinct clades (Fig. 2). The first clade included only M. leucogaster and formed a sister group with M. fanjingshanensis. The second clade included sequences initially identified as belonging to both M. leucogaster and M. hilgendorfi and formed a sister group with M. bicolor, M. fanjingshanensis, M. leucogaster, M. shuipuensis, and Murina sp2. According to Ruedi et al. (2012), individuals in the second clade labeled as M. leucogaster were actually M. hilgendorfi.

Figure 2. 

Bayesian inference (BI) tree and an assessment of Murina species delimitation using ASAP, mPTP, and bPTP based on the mitochondrial Cyt b gene. BI tree node numbers indicate the Bayesian posterior probability (BPP). The black and pink boxes denote the putative species identified by ASAP, mPTP, and bPTP.

The genetic distance between Murina sp1 and M. pluvialis was 0.09, the distance between Murina sp2 and M. shuipuensis was 0.13, and the distance between Murina sp3 and M. chrysochaetes was 0.15 (Table 1). The molecular evidence thus suggests that three putative new species can be distinguished from other known species within the genus Murina.

Table 1.

Genetic distance based on the Kimura 2-parameter model between species calculated from Cyt b sequences.

ID Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 M. annamitica
2 M. aenea 0.18
3 M. bicolor 0.18 0.19
4 M. cyclotis 0.18 0.16 0.18
5 M. eleryi 0.18 0.17 0.20 0.18
6 M. fanjingshanensis 0.19 0.19 0.08 0.17 0.21
7 M. florium 0.18 0.16 0.18 0.18 0.18 0.18
8 M. gracilis 0.20 0.19 0.22 0.18 0.08 0.22 0.19
9 M. hilgendorfi 0.18 0.17 0.15 0.17 0.18 0.15 0.18 0.20
10 M. huttonii 0.20 0.19 0.19 0.17 0.19 0.20 0.20 0.18 0.20
11 M. jaintiana 0.17 0.18 0.17 0.15 0.19 0.16 0.15 0.19 0.18 0.20
12 M. leucogaster 0.19 0.18 0.09 0.16 0.20 0.02 0.17 0.21 0.14 0.19 0.16
13 M. liboensis 0.18 0.18 0.20 0.08 0.20 0.19 0.18 0.20 0.19 0.19 0.17 0.18
14 M. peninsularis 0.18 0.17 0.18 0.14 0.19 0.19 0.20 0.22 0.18 0.20 0.19 0.19 0.16
15 M. pluvialis 0.17 0.18 0.19 0.18 0.20 0.19 0.19 0.19 0.19 0.20 0.17 0.20 0.17 0.18
16 M. puta 0.19 0.20 0.18 0.18 0.18 0.19 0.20 0.17 0.18 0.08 0.20 0.18 0.19 0.19 0.21
17 M. recondita 0.19 0.18 0.21 0.19 0.08 0.21 0.19 0.05 0.19 0.18 0.19 0.21 0.21 0.22 0.19 0.18
18 M. shuipuensis 0.15 0.19 0.12 0.16 0.20 0.11 0.17 0.20 0.14 0.18 0.16 0.12 0.18 0.18 0.17 0.16 0.19
19 M. suilla 0.19 0.14 0.21 0.17 0.19 0.19 0.08 0.20 0.18 0.20 0.17 0.19 0.17 0.19 0.18 0.21 0.19 0.17
20 M. tubinaris 0.17 0.17 0.17 0.17 0.19 0.17 0.16 0.19 0.17 0.20 0.09 0.17 0.18 0.19 0.18 0.19 0.19 0.16 0.17
21 M. ussuriensis 0.17 0.17 0.18 0.17 0.19 0.19 0.20 0.20 0.16 0.17 0.19 0.20 0.18 0.18 0.18 0.17 0.19 0.18 0.19 0.20
22 M. chayuensis sp. nov. 0.17 0.18 0.18 0.17 0.20 0.18 0.17 0.19 0.19 0.19 0.17 0.18 0.17 0.17 0.09 0.19 0.20 0.17 0.18 0.17 0.17
23 M. sp3. 0.19 0.20 0.19 0.20 0.18 0.20 0.21 0.19 0.18 0.21 0.19 0.20 0.20 0.19 0.20 0.20 0.19 0.20 0.23 0.19 0.18 0.19
24 M. sp2. 0.20 0.19 0.15 0.16 0.20 0.13 0.18 0.22 0.15 0.20 0.19 0.13 0.19 0.17 0.20 0.18 0.22 0.13 0.19 0.18 0.20 0.19 0.20
25 M. aff. huttonii 0.19 0.20 0.19 0.17 0.19 0.20 0.20 0.19 0.19 0.04 0.19 0.20 0.18 0.18 0.21 0.09 0.19 0.17 0.20 0.19 0.16 0.19 0.21 0.18
26 M. chrysochaetes 0.16 0.18 0.17 0.16 0.16 0.17 0.19 0.17 0.17 0.14 0.18 0.17 0.18 0.16 0.17 0.14 0.16 0.17 0.19 0.17 0.15 0.18 0.15 0.18 0.15

The ASAP analysis identified 29 species partitions based on the best ASAP scores (Suppl. material 1: fig. S1). The method revealed two distinct phylogenetic species clades within M. gracilis and three within the morphospecies M. huttonii (Fig. 2 and Suppl. material 1: fig S1). The mPTP and bPTP tree-based analyses also identified 29 species partitions, consistent with the ASAP results (Fig. 2, Suppl. material 1: figs S2, S3). All three methods supported the partitioning of Murina sp1 (Murina chayuensis sp. nov.), Murina sp2, and Murina sp3 (Fig. 2).

Taxonomic treatment

Murina chayuensis Luo & Zhou, sp. nov.

Figs 3, 4, Suppl. material 1: table S1

Materials.

Holotype. • XZ2023107 (36.51 mm FA and 16.83 mm GTL; Figs 3, 4) was collected by Pengfei Luo and Jiang Zhou on 17 August 2023, in Chayu County, Linzhi City, Xizang, China (28°29'51.12"N, 97°0'53.87"E, 1511 m a.s.l; Fig. 1). Paratypes. • Four specimens (XZ2023085, XZ2023086, XZ2023088, and XZ2023100) were collected by Pengfei Luo and Jiang Zhou from the same locality as the holotype (28°29'51.12"N, 97°0'53.87"E, 1511 m a.s.l; 28°29'1.47"N, 97°1'23.07"E, 1613 m a.s.l; Fig. 1).

Figure 3. 

External characteristics of Murina chayuensis sp. nov. (XZ2023107) A. Face; B. Dorsal fur; C. Ventral fur; and D. Hindfoot.

Figure 4. 

Cranial morphology of Murina chayuensis sp. nov. (XZ2023107) A. Cranium in dorsal view; B. Cranium in ventral view; C. Cranium in left side view; D. Mandible in dorsal view; and E. Mandible in left side view. Scale bar: 10 mm.

Etymology.

We discovered a new species in Chayu County that we named Murina chayuensis sp. nov. We propose the common English name “Chayu Tube-Nosed Bat” and the Chinese name “chá yú guǎn bí fú (察隅管鼻蝠).”

Diagnosis.

The new species is a medium-sized bat in the genus Murina (FA: 33.49–36.51 mm; Table 2 and Suppl. material 1: table S1). Dorsal fur overall displays a tan color, with a few reddish-brown guard hairs. Dorsal fur has two color bands: black at the base and tan at the tip (Fig. 3A, B). Ventral fur overall is pale, with two color bands, a dark base covering approximately two-thirds and a whitish tip covering approximately one-third (Fig. 3C). The plagiopatagium is almost attached to the base of the claw (Fig. 3D). The skull is domed (Fig. 4C). The sagittal crest is absent, and the lambdoid crest is weakly developed (Fig. 4A, C). The first upper incisor (I2) is obscured by the second upper incisor (I3) in lateral view (Fig. 4C). The mesostyles of the first and second upper molars (M1 and M2) are well developed, with distinct cusps, and there is a W-shaped indentation on the outer side of the molars (Fig. 4B). The basal area of the second upper premolar (P4) is comparable to that of the upper canine (C1), whereas the basal area of the first upper premolar (P2) is approximately two-thirds that of P4 (Fig. 4B). The basal area of the lower M1 and M2 talonids is two-thirds of their respective trigonids, and the M3 talonid is half of its trigonid (Fig. 4D, E).

Table 2.

External and cranial measurements (in mm) of Murina species.

Species Sex FA E GTL CBL CCL ZYW IOW BCW
M. aenea ♂♂ (n = 3) 35.00, 35.60 [2] 14.50, 15.00 [2] 16.95–17.73 15.73–16.19 14.97–15.55 10.29–10.76 4.71–4.87 [2] 8.15–8.38
♀♀ (n = 4) 34.70–37.40 12.70–14.90 17.20–17.80 [3] 15.80–16.39 [3] 15.00–15.69 [3] 10.65 [1] 4.83 [1] 8.11
M. annamitica ♂♂ (n = 5) 30.00–30.90 13.10–14.00 [4] 16.00–16.20 14.30–14.80 \ 8.70–9.00 \ \
32.2 14.5 16.4 15.1 \ 9.4 \ \
M. cyclotis ♂♂ (n = 36) 29.40–33.00 [35] 12.00–17.60 [17] 15.86–17.08 [27] 14.00–15. 67 [27] 13.60–15.12 8.78–10.05 [35] 3.92–4.48 7.16–8.10
♀♀ (n = 40) 31.60–36.80 12.70–16.00 [17] 16.60–18.18 [25] 14.95–16.86 [24] 14.34–16.17 [38] 9.33–10.43 [37] 3.99–4.52 [38] 7.40–8.17 [38]
M. fionae ♂♂ (n = 7) 34.50–36.30 12.10–15.60 [6] 17.53–19.26 15.99–17.49 15.32–16.87 9.78–10.89 4.26–4.85 7.75–8.39
♀♀ (n = 6) 35.50–40.10 14.90–15.50 [3] 18.12–19.19 16.48–17.45 15.82–16.73 10.19–10.85 4.23–4.75 7.84–8.49
M. guilleni ♂♂ (n = 6) 31.90–34.00 11.40–15.20 16.40–17.54 14.93–15.83 14.47–15.19 9.29–9.93 4.24–4.44 7.65–7.82
♀♀ (n = 3) 35.00–35.90 13.50–15.10 17.12–18.10 15.79–16.43 15.09–15.76 9.75–10.02 4.20–4.44 7.53–7.74
M. harrisoni ♂♂ (n = 5) 33.40–35.30 \ 17.30–17.90 15.16–15.80 \ 9.74–10.23 4.21–4.37 \
♀♀ (n = 5) 36.80–39.50 \ 18.51–18.91 16.20–16.65 \ 10.68–10.91 4.23–4.58 \
M. huttonii 35.10 16.70 17.90 16.50 \ 9.20 \ \
♀♀ (n = 2) 35.80, 36.40 16.20, 17.40 18.10, 18.40 16.5, 16.8 \ 9.9, 10.02 \ \
M. lorelieae ♂♂ (n = 5) 29.77–31.35 13.74–14.91 14.82–15.43 14.24–14.28 \ 7.86–8.46 \ 6.87–7.48
♀♀ (n = 8) 32.41–34.44 14.31–15.94 15.07–15.94 14.28–14.26 \ 8.46–9.05 \ 7.13–7.69
M. liboensis ♂♂ (n = 3) 28.16–30.98 11.52–12.92 15.54–16.52 10.16–11.54 \ 7.75–9.32 \ 6.32–7.45
♀♀ (n = 2) 32.28, 32.64 13.84, 14.37 16.30, 16.97 13.35, 13.85 \ 8.53, 9.32 \ 7.67, 7.78
M. peninsularis ♂♂ (n = 22) 33.80–38.10 [22] 11.90–18.80 [13] 17.39–18.52 15.68–16.91 14.90–16.41 9.76–11.31 4.31–4.97 [22] 7.72–8.48
♀♀ (n = 17) 34.50–39.40 13.00–17.00 [12] 17.59–19.33 16.11–17.69 15.53–16.89 10.12–11.22 4.46–4.88 [16] 7.70–8.58
M. pluvialis 36.60 \ 16.40 \ 14.50 9.26 4.32 \
M. rozendaali ♂♂ (n = 13) 29.00–31.20 [9] 12.30–14.10 [7] 15.47–16.42 [7] 13.96–14.75 [7] 13.48–14.10 [7] 8.73–9.46 [7] 3.98–4.32 [6] 7.27–7.50 [7]
M. tiensa Unknown (n = 4) 35.20–40.10 \ 17.39–19.43 \ \ \ \ \
M. chayuensis sp. nov ♂♂ (n = 4) 33.49–35.12 13.72–14.47 15.75–16.35 12.91–15.07 12.58–14.74 8.57–8.94 4.45–5.16 7.25–7.46
36.51 14.82 16.83 14.25 13.09 9.45 5.18 7.42
Species Sex MAW BCH CM3L C1C1W M3M3W CM3L ML
M. aenea ♂♂ (n = 3) 8.61–8.85 6.92–7.48 8.15–8.38 8.15–8.38 6.51–6.62 6.51–6.62 11.99–12.71
♀♀ (n = 4) 8.90 7.67 6.06 4.88 6.09 6.64 12.81
M. annamitica ♂♂ (n = 5) 7.50–8.00 \ 5.00–5.20 3.80–4.10 \ 5.00–5.70 \
8.1 \ 5.3 4.5 \ 5.9 \
M. cyclotis ♂♂ (n = 36) 7. 11–8. 48 6.08–7.22 [34] 5.12–5.68 3.73–4.27 5.07–5.79 [35] 5.57–6.18 10.52–11.68 [35]
♀♀ (n = 40) 7. 64–8. 58 [38] 6.10–7.21 [37] 5.06–6.00 [38] 4.00–4.68 [37] 5.18–6.05 [38] 5.75–6.49 [37] 11.32–12.78 [37]
M. fionae ♂♂ (n = 7) 8.10–8.91 6.53–7.50 5.72–6.40 4.18–4.88 5.74–6.25 6.30–6.95 11.99–13.19
♀♀ (n = 6) 8.22–8.92 6.98–7.48 5.78–6.32 4.32–4.72 5.71–6.24 6.33–6.89 12.56–13.01
M. guilleni ♂♂ (n = 6) 8.00–8.28 6.57–6.91 5.44–5.72 4.12–4.31 [5] 5.36–5.80 5.83–6.12 11.13–11.74
♀♀ (n = 3) 8.18–8.43 6.78–7.10 5.50–5.91 4.28–4.44 5.68–5.87 6.01–6.43 11.95–12.34
M. harrisoni ♂♂ (n = 5) 8.54–8.93 \ 5.63–6.00 \ \ 6.32–6.83 \
♀♀ (n = 5) 9.04–9.59 \ 6.15–6.39 \ \ 6.24–6.81 \
M. huttonii 8.60 \ 6.10 4.60 \ 6.70 \
♀♀ (n = 2) 8.50, 8.60 \ 6.10, 6.10 4.60, 4.70 \ 6.70, 6.90 \
M. lorelieae ♂♂ (n = 5) 6.92–7.47 \ 4.70–4.83 3.50–3.80 5.02–5.48 4.73–5.15 9.67–9.98
♀♀ (n = 8) 7.38–7.83 \ 4.80–5.00 3.71–3.81 5.11–5.50 4.94–5.09 10.32–10.72
M. liboensis ♂♂ (n = 3) 5.02–6.53 5.84–7.46 4.26–5.13 3.04–3.78 4.19–5.32 4.84–5.53 9.67–11.53
♀♀ (n = 2) 6.73, 7.12 7.51, 7.75 5.39, 5.58 3.99, 4.16 5.41, 5.75 5.74, 5.94 11.63, 12.28
M. peninsularis ♂♂ (n = 22) 8.32–9.39 6.79–8.22 5.52–6.09 4.28–5.28 5.45–6.22 5.94–8.02 11.25–12.92 [21]
♀♀ (n = 17) 8.08–9.62 7.10–8.37 5.68–6.39 4.46–5.26 [16] 5.69–6.22 [16] 6.28–6.94 [16] 12.09–13.59
M. pluvialis 7.78 6.43 5.49 4.21 5.52 5.93 11.18
M. rozendaali ♂♂ (n = 13) 7.34–7.74 [7] 6.15–6.86 [7] 5.20–5.50 [7] 3.77–4.14 [7] 5.17–5.35 [6] 5.62–6.02 [6] 10.55–11.22 [6]
M. tiensa Unknown (n = 4) \ \ 5.82–6.68 \ \ 6.30–7.21 11.95–13.62
M. chayuensis sp. nov ♂♂ (n = 4) 6.87–7.47 6.89–7.60 4.83–6.06 3.67–3.92 5.36–5.72 5.23–6.67 10.22–11.01
7.41 6.47 5.45 4.04 5.56 5.51 11.55

In the phylogenetic analyses (Fig. 2), all specimens of Murina chayuensis sp. nov. formed a clade and a distinct lineage sister to M. pluvialis with a posterior probability of 1, indicating that Murina chayuensis sp. nov. and M. pluvialis have differentiated but share a close phylogenetic relationship. However, the genetic distance between Murina chayuensis sp. nov. and M. pluvialis was 0.09, a value that is greater than those between M. fanjingshanensis and M. bicolor (0.08), between M. liboensis and M. cyclotis (0.08), between M. suilla and M. florium (0.08), and between M. eleryi and M. gracilis (0.08) (Table 1). Therefore, the validity of Murina chayuensis sp. nov. as a distinct species is established.

Description.

Murina chayuensis sp. nov. possesses a “cyclotis-type” dentition, characterized by the I3 obscuring the I2, with the basal area of P2 being two-thirds or more than that of P4 (Corbet and Hill 1992; Koopman, 1994; Francis et al. 2010; Son et al. 2015). There is black facial hair surrounding the mouth and eyes (Fig. 3A). There is a rounded auricle with no visible incision on the posterior edge (Fig. 3A). On the dorsal surface, the hair color displays two bands, being black at the base and tan at the tip, with a few reddish-brown guard hairs (Fig. 3A, B). The upper surfaces of the uropatagium, hind limbs, and feet are densely covered in uniformly tan hairs. Short golden hairs occur on the dorsum of the forearms and thumbs but not on the metacarpals. On the ventral surface, the hairs are also bicolored, dark brown at the base and whitish at the tip (Fig. 3C). The plagiopatagium is attached to the base of the claw (Fig. 3D).

The skull is medium-sized, with a GTL of 15.75–16.83 mm. The CM3L is 5.14–6.06 mm, which is 0.31–0.37 of the GTL (Table 2 and Suppl. material 1: table S1). The rostrum is flat, and the braincase is domed (Fig. 4C), with a relatively high braincase (BCH/BCW:‾x = 0.98; sd = 0.07; range = 0.87–1.06; n = 5; Table 2 and Suppl. material 1: table S1). The interorbital region is deeply concave (Fig. 4A). The forehead is slowly and smoothly rising from the rostrum to the braincase (Fig. 4C). The zygoma is not strong without a dorsal process (Fig. 4C). The prepalatal emargination is equal in depth and width, ending at the level of middle of the upper canine (C1) (Fig. 4A, B). The postpalatal emargination is width over depth (Fig. 4B). A pair of basisphenoid pits are well defined, tear-drop shaped, and deep. (Fig. 4B). The sagittal crest is absent, and the lambdoid crest is weakly developed (Fig. 4A, C). The maxillary toothrows are convergent anteriorly (C1C1W/M1M1W:‾x = 0.69; sd = 0.02; range = 0.68–0.73; n = 5). The dental formula is I2/3 C1/1 P2/2 M3/3 = 34 (Fig. 4B, D). The I2 is largely obscured by I3 in the side view (Fig. 4C). P2 is shorter than P4; P4 is approximately two-thirds of C1, and P2 is half of C1 in height (Fig. 4C). The basal area of P4 is comparable to that of C1 (Fig. 4B). The paracones of the first and second upper molars (M1 and M2) are higher than their respective metacones. The third upper molar (M3) retains only the paracone, parastyle, and protocone. The mesostyles of M1 and M2 are well developed, with distinct cusps. There is a W-shaped indentation on the labial sides of M1 and M2 (Fig. 4B, C).

The mandible is delicate, with 10.22–11.55 mm of ML (Table 2 and Suppl. material 1: table S1). The CM3L is 5.23–6.67 mm, which is 0.48–0.61 of ML (Table 2 and Suppl. material 1: table S1). C1 is higher than the lower first and second premolars (P2 and P4) (Fig. 4E). P2 and P4 are subequal in height (Fig. 4E). The basal area of P2 is approximately two-thirds that of P4 (Fig. 4D). The lower first and second molars (M1 and M2) possess the structural type of nyctalodonty (Fig. 4D). The entoconids of M1 and M2 are developed, with distinct cusps (Fig. 4D). The basal area of the lower M1 and M2 talonids is two-third their respective trigonids, and the M3 talonid is half of its trigonid (Fig. 4D, E).

Comparisons with other taxa.

Murina chayuensis sp. nov. possesses “cyclotis-type” dentition. Therefore, it is readily distinguished from all species with the “suilla-type” dentition. Within all recognized species that have “cyclotis-type” dentition, M. liboensis and M. rozendaali are much smaller and can be easily distinguished from the new species (FA lower than 33.5 mm; Table 2). M. harrisoni, M. tiensa, M. cyclotis, M. fionae, M. guilleni, and M. peninsularis either possess unicolored pale fur or indistinct color bands on the ventral side (vs. distinct bicolor; Fig. 3C), and they possess a developed sagittal crest (vs. absent; Figs 4A, C, 5B–E, I, L). Compared with Murina chayuensis sp. nov., M. harrisoni and M. tiensa also have larger skulls, longer CM3L and CM3L (Table 2), and a flatter braincase (vs. domed; Figs 4C, 5E, L). In addition, M. cyclotis, M. fionae, M. guilleni, and M. peninsularis lack mesostyles of M1 and M2 (vs. developed; Figs 4B, 5B–D, I). Of the above species, only M. cyclotis occurs in the southeastern QTP and adjacent areas (Fig. 1); this species can also be distinguished from Murina chayuensis sp. nov. by smaller FA (Table 2) and more developed P2 (basal area: P2 and P4 are equal in M. cyclotis vs. P2 is two-thirds of P4 in Murina chayuensis sp. nov.; Figs 4B, 5B).

Figure 5. 

Cranial morphology of other Murina species with the “cyclotis-type” dentition, sourced from Eger & Lim, 2012; Reudi et al. 2012; Soisook, 2013; and Zeng et al. 2018. A. M. annamitica (PSUZC-MM2011.31); B. M. cyclotis (PSUZC-MM2006.179); C. M. fionae (field no. 025); D. M. guilleni (PSUZC-MM2010.22, holotype); E. M. harrisoni (field no. T.220408.2); F. M. huttonii (PSUZV-MM2011.33); G. M. liboensis (GZNU20160727022, holotype); H. M. lorelieae (ROM MAM 116171, holotype); I. M. peninsularis (PSUZC-MM2012.196); J. M. pluvialis (MHNg 1976.071, holotype); K. M. rozendaali (PSUZC-MM2012.206); and L. M. tiensa (HZM 2.38178, holotype). Scale bar: 5 mm.

Other Murina species possess “cyclotis-type” dentition that is distributed in the southeastern QTP, including M. huttonii and M. pluvialis. The ear of M. huttonii is longer at 16.20–17.40 mm (vs. 13.72–14.82 mm; Table 2); the interfemoral membrane is extensively covered with reddish-brown hairs (vs. absent); and the skull is longer, with GTL 17.90–18.40 mm (vs. 15.75–16.83 mm; Table 2). Furthermore, the prepalatal emargination is shallower, closing to the junction of C1 and P2 (vs. middle of C1; Figs 4B, 5F); the talonids of M1 and M2 are only slightly less than their respective trigonids in length (vs. two-thirds; Fig. 4D). M. pluvialis as a sister taxon to M. chayuensis sp. nov. (Fig. 2), and these two species are similar in body size (Table 2). However, M. pluvialis has bright red dorsal fur without shiny guard hairs and silvery gray hair ventrally, clearly distinguishing it from the new species (vs. tan in the dorsal and whitish in the ventral hair, with the presence of reddish-brown guard hairs; Fig. 3A–C); the sagittal and lambdoid crests are more developed (vs. absent and weak; Figs 4A, C, 5J). Furthermore, the crown area between P2 and P4 has a distinct gap (vs. indistinct; Figs 4C, 5J); the mesostyles of M1 and M2 are reduced (vs. well developed; Figs 4B, 5J); and the indentation in the labial side is more U-shaped from the ventral view (vs. W-shaped; Figs 4B, 5J). In addition, the talonids of M1 and M2 are equal to their respective trigonids in length (vs. two-thirds; Figs 4D, E, 5J).

M. lorelieae and M. annamitica are similar to Murina chayuensis sp. nov. in fur color and cranial morphology. However, both species have a shorter FA (Table 2), and the prepalatal emargination is shallower, ending at the level of the junction of C1 and P2 (vs. middle of C1; Figs 4A, B, 5A, H). In addition, M. annamitica shows slate gray basal fur dorsally (vs. black; Fig. 3B), and P2 is equal to P4 in height (vs. two-thirds; Figs 4C, 5A). Despite the lack of M. lorelieae in the phylogenetic analysis, it is also possible to distinguish Murina chayuensis sp. nov. by its dorsal fur having three color bands (vs. two color bands; Fig. 3B). The braincase is also more inflated, rising more abruptly from the rostrum (vs. slowly and smoothly rising; Figs 4C, 5H), and the lambdoidal is absent (vs. present; Figs 4A, C, 5H).

Distribution and ecology.

To date, Murina chayuensis sp. nov. has only been found in Xiachayu Town, Chayu County, Xizang, China. The specimens were captured in harp traps set in mixed coniferous-broad-leaved forest at an altitude of approximately 1500–1600 m. This forest is near Xiachayu Town and local farms, where we also collected six species from five genera: Murina sp2, M. aff. huttonii, Harpiola isodon, Rhinolophus ferrumequinum, Pipistrellus sp., and Myotis sp.

Discussion

In this study, we described a new bat species, Murina chayuensis sp. nov. (Murina sp1), discovered in Xiachayu Town, Chayu County, Xizang, China. The identification was based on morphological characteristics (see Sec. 3.6) and genetic differences (see Sec. 3.1). The addition of this new species brings the total number of recognized Murina species to 42 (Wilson and Mittermeier 2019; Yu et al. 2020; Mou et al. 2024; Wang et al. 2024), with four species now identified in the QTP (Huang et al. 2008; Wang et al. 2024). The southeastern QTP, characterized by its relatively low elevation, deeply cut valleys, and diverse vertical climates, harbors complex ecosystems (Zhang et al. 2002). Recent taxonomic studies and intensified surveys have led to the discovery of several new species of small mammals in this region (Liu et al. 2022; Chen et al. 2024). Notably, the two distinct lineages identified as Murina sp2 and Murina sp3 may potentially represent two undescribed species of Murina (Fig. 2). Therefore, further specimen collecting and analysis are necessary for proper morphological description.

DNA barcoding, a molecular analysis tool, enables swift species identification (Francis et al. 2010; Csorba et al. 2011; Francis and Eger 2012). It has been instrumental in recognizing cryptic diversity. An example from bats is the M. cyclotis complex, which includes M. cyclotis, M. peninsularis, M. fionae, M. guilleni, and M. liboensis (Francis and Eger 2012; Soisook et al. 2013; Zeng et al. 2018). Nevertheless, morphological characters remain a vital criterion for taxonomic studies and species identification (Yu et al. 2020). Herein, we provide a key to the Murina species occurring in the southeastern QTP (Appendix 3; Table 2 and Suppl. material 1: table S2).

Based on dental characteristics, Murina bats have traditionally been divided into two species types, “suilla” and “cyclotis” (Corbet & Hill, 1992; Koopman, 1994). Based on the position of I2 and I3 and the crown area of P2 and P4 (Corbet & Hill, 1992), Murina chayuensis sp. nov. belongs to the “cyclotis” type. A cranial morphometric analysis of Murina species by Son et al. (2015) showed that the crown area of C1 and P4 is an important characteristic that distinguishes the “suilla” and “cyclotis” types. Therefore, we can confirm that Murina chayuensis sp. nov. is a member of the “cyclotis” type, as the crown area of C1 is greater than that of P4. However, the dental characteristics do not have strict phylogenetic correspondence (Francis et al. 2010; Son et al. 2015). The internal nodes in single segment-based phylogenetic trees are not robust in existing studies within the genus Murina (Ruedi et al. 2012; Tu et al. 2015; Yu et al. 2020). Thus, genome-level data and morphological characteristics are necessary to reconstruct a robust phylogenetic tree and supplement diagnostic keys. In addition, clarifying the phylogenetic relationships between species or types can contribute to a deeper understanding of the origins, dispersal patterns, and differentiation of Murina species.

Acknowledgments

This study was funded by the Special Foundation for National Science and Technology Basic Research Program of China (2021FY100302), the Survey of Wildlife Resources in Key Areas of Xizang (Phase I) (ZL202203601), and the Survey of Wildlife Resources in Key Areas of Xizang (Phase II) (ZL202303601). We thank LetPub (www.letpub.com.cn) for its linguistic assistance during the preparation of this manuscript.

References

  • Bates PJJ, Harrison DL (1997) Bats of the Indian Subcontinent. Harrison Zoological Museum, Sevenoaks, UK.
  • Chen J, Liu T, Deng H, Xiao N, Zhou J (2017) A new species of Murina bats was discovered in Guizhou Province, China. Cave Research 2: 1.
  • Chen Z, Wu Y, Yu W, Li F, Zhu J, Gong C, Xu J, Hu Y, Li Y (2018) Another discovery of Murina harrisoni in mainland of China – A new record from Jiangxi Province. Journal of west China Forestry Science 47(2): 75–80. https://doi.org/10.16473/j.cnki.xblykx1972.2018.02.014 [in Chinese]
  • Chen Z, Pei X, Hu J, Song W, Khanal L, Li Q, Jiang X (2024) Multilocus phylogeny and morphological analyses: illuminate overlooked diversity of Soriculus (Mammalia: Eulipotyphla: Soricidae), with descriptions of two new endemic species from the eastern Himalayas. Zoological Journal of the Linnean Society 201(2): 534–548. https://doi.org/10.1093/zoolinnean/zlad131
  • Corbet GB, Hill JE (1992) The mammals of the Indomalayan region. Natural History Museum and Oxford University Press, Oxford.
  • Csorba G, Thong VD, Bates PJJ, Furey NM (2008) Description of a new species of Murina from Vietnam (Chiroptera: Vespertilionidae: Murininae). Acta Chiropterologica 10(2): 213–220. https://doi.org/10.3161/150811008X414809
  • Csorba G, Son NT, Saveng I, Furey NM (2011) Revealing cryptic bat diversity: Three new Murina and redescription of M. tubinaris from Southeast Asia. Journal of Mammalogy 92(4): 891–904. https://doi.org/10.1644/10-MAMM-A-269.1
  • Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340
  • Feng Z, Cai G, Zheng C (1986) The Mammals of Xizang. Science Press, Beijing.
  • Francis CM, Borisenko AV, Ivanova NV, Eger JL, Lim BK, Guillén-Servent A, Kruskop SV, Mackie I, Hebert PDN (2010) The Role of DNA Barcodes in Understanding and Conservation of Mammal Diversity in Southeast Asia. PLoS ONE 5(9): e12575. https://doi.org/10.1371/journal.pone.0012575
  • He F, Xiao N, Zhou J (2015) A new species of Murina from China (Chiroptera: Vespertilionidae). Cave Research 2: 2.
  • Huang W, Xia L, Yang Q, Feng Z (2008) Distribution pattern and zoogeographical division of mammals on the Qinghai-Tibet Plateau. Shou Lei Xue Bao 28(4): 375–394. [in Chinese]
  • Huang T, Gong X, Wu T, Peng L, Zhang Y, Zhang L, Liu Z 2018 New record of Murina fanjingshanensis (Chiroptera: Vespertilionidae) in Hunan Province, China. Acta Theriologica Sinica [in Chinese] 38(3): 315–317.
  • Huang Z, Yue Y, Thapa S, Hu Y, Wu Y, Yu W (2019) Mitochondrial genome of Murina shuipuensis (Chiroptera: Vespertilionidae) from Shuifu Village, Guizhou, China (type locality). Mitochondrial DNA. Part B, Resources 4(2): 2588–2590. https://doi.org/10.1080/23802359.2019.1641436
  • Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, Flouri T (2017) Multi-rate poisson tree processes for single-locus species delimitation under maximum likelihood and Markov Chain Monte Carlo. Bioinformatics (Oxford, England) 33(11): 1630–1638. https://doi.org/10.1093/bioinformatics/btx025
  • Koopman KF (1994) Chiroptera: systematics. Handbook of zoology. Mammalia, part 60. Walter de Gruyter, Berlin, 1–24.
  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120. https://doi.org/10.1007/BF01731581
  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054
  • Kuo H, Chen S, Fang Y, Flanders J, Rossiter SJ (2014) Comparative rangewide phylogeography of four endemic Taiwanese bat species. Molecular Ecology 23(14): 3566–3586. https://doi.org/10.1111/mec.12838
  • Li G, Jones G, Rossiter SJ, Chen SF, Parsons S, Zhang S (2006) Phylogenetics of small horseshoe bats from East Asia based on mitochondrial DNA sequence variation. Journal of Mammalogy 87(6): 1234–1240. https://doi.org/10.1644/05-MAMM-A-395R2.1
  • Li F, Wang X, Yu W, Hu Y, Guo W, Li Y, Wu Y (2017) Discovery of Murina lorelieae beyond its type locality—A new Murina record from Yunnan, China. Dongwuxue Zazhi 52(5): 727–736. [in Chinese]
  • Liu S, Zhou C, Meng G, Wan T, Tang M, Yang C, Murphy RW, Fan Z, Liu Y, Zeng T, Zhao Y, Liu S (2022) Evolution and diversification of Mountain voles (Rodentia: Cricetidae). Communications Biology 5(1): 1417. https://doi.org/10.1038/s42003-022-04371-z
  • Ma XM (2016) Study on Complete Mitochondrial Genome of Cypridopsis vidua and Molecular Phylogeny of Ostracoda. PhD Thesis, East China Normal University Shanghai, China.
  • Mou X, Qian Y, Li M, Li B, Luo X, Li S (2024) A new species of Murina (Chiroptera: Vespertilionidae) from Yunnan, China. Animals (Basel) 14(16): 2371. https://doi.org/10.3390/ani14162371
  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772): 853–858. https://doi.org/10.1038/35002501
  • Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Morueta-Holme N, Nogues-Bravo D, Whittaker RJ, Fjeldsa J (2019) Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365(6458): 1108–1113. https://doi.org/10.1126/science.aax0149
  • Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Ruedi M, Biswas J, Csorba G (2012) Bats from the wet: two new species of Tube-nosed bats (Chiroptera: Vespertilionidae) from Meghalaya, India. Revue suisse de Zoologie 119(1): https://doi.org/10.5962/bhl.part.150145.
  • Sakai T, Kikkawa Y, Tsuchiya K, Harada M, Kanoe M, Yoshiyuki M, Yonekawa H (2013) Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequence of the mitochondrial cytochrome b gene. Genes & Genetic Systems 78(2): 179–189. https://doi.org/10.1266/ggs.78.179
  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM. Mammal Species of the World: a Taxonomic and Geographic Reference, 3rd edn. The Johns Hopkins University Press, Baltimore, 2142 pp.
  • Soisook P (2013) Systematics, Biogeography and Echolocation of Tube-nosed Bats Genus Murina (Chiroptera: Vespertilionidae) in Mainland Southeast Asia. PhD Thesis, Prince of Songkla University, Songkhla, Thailand.
  • Soisook P, Karapan S, Satasook C, Thong VD, Khan FAA, Maryanto I, Csorba G, Furey N, Aul B, Bates PJJ (2013) A review of the Murina cyclotis complex (Chiroptera: Vespertilionidae) with descriptions of a new species and subspecies. Acta Chiropterologica 15(2): 271–292. https://doi.org/10.3161/150811013X678928
  • Soisook P, Thaw WN, Kyaw M, Oo SSL, Pimsai A, Suarez-Rubio M, Renner SC (2017) A new species Murina (Chiroptera: Vespertilionidae) from sub-Himalayan forests of northern Myanmar. Zootaxa 4320(1): 159–172. https://doi.org/10.11646/zootaxa.4320.1.9
  • Son NT, Csorba G, Tu VT, Thong VD, Wu Y, Harada M, Oshida T, Endo H, Motokawa M (2015) A new species of the genus Murina (Chiroptera: Vespertilionidae) from the Central Highlands of Vietnam with a review of the subfamily Murininae in Vietnam. Acta Chiropterologica 17(2): 201–232. https://doi.org/10.3161/15081109ACC2015.17.2.001
  • Wang X, Han X, Csorba G, Wu Y, Chen H, Zhao X, Dong Z, Yu W, Lu Z (2024) A new species of Tube-nosed Bat (Chiroptera: Vespertilionidae: Murina) from Qinghai–Tibet Plateau, China. Journal of Mammalogy, gyae104. https://doi.org/10.1093/jmammal/gyae104
  • Wilson DE, Mittermeier RA (2019) Handbook of the Mammals of the World, Vol. 9. Bats. Lynx Edicions, Barcelona, 908–920.
  • Yoon GB, Park YC (2014) The complete mitogenome of the Korean greater tube-nosed bat, Murina leucogaster (Chiroptera: Vespertilionidae). Mitochondrial DNA Part A 27(3): 2145–2146. https://doi.org/10.3109/19401736.2014.982598
  • Yoon GB, Kim HR, Kim JY, Jeon SH, Park YC (2013) The complete mitogenome of the Ussurian tube-nosed bat, Murina ussuriensis (Chiroptera: Vespertilionidae) in Korea. Mitochondrial DNA 24(4): 397–399. https://doi.org/10.3109/19401736.2013.763243
  • Zeng X, Chen J, Deng H, Xiao N, Zhou J (2018) A new Species of Murina from China (Chiroptera: Vespertilionidae). Ekoloji 27(103): 9–16.
  • Zhang B, Chen X, Li B, Yao Y (2002) Biodiversity and conservation in the Tibetan Plateau. Journal of Geographical Sciences 12(2): 135–143. https://doi.org/10.1007/BF02837467
  • Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics (Oxford, England) 29(22): 2869–2876. https://doi.org/10.1093/bioinformatics/btt499

Appendix 1

Table A1.

The bat species used in the phylogenetic analyses.

Species Locality Cyt b Reference
Harpiocephalus harpia Taiwan, China GQ168918 Han et al. 2009 (unpublished)
Murina aenea Malaysia GQ168906 Han et al. 2009 (unpublished)
M. aenea Malaysia GQ168907 Han et al. 2009 (unpublished)
M. annamitica Laos JQ044688 Ruedi et al. 2012
M. bicolor Taiwan, China GQ168919 Han et al. 2009 (unpublished)
M. bicolor Taiwan, China JQ044696 Ruedi et al. 2012
M. bicolor Taiwan, China GQ168921 Han et al. 2009 (unpublished)
Murian chayuensis sp. nov. Xizang, China PQ412936 (XZ2024085) This study
Murian chayuensis sp. nov. Xizang, China PQ412937 (XZ2024086) This study
Murian chayuensis sp. nov. Xizang, China PQ412938 (XZ2024088) This study
Murian chayuensis sp. nov. Xizang, China PQ412939 (XZ2024100) This study
Murian chayuensis sp. nov. Xizang, China PQ412940 (XZ2024107) This study
M. chrysochaetes Xizang, China PQ422114 (XZ2023084) This study
M. cyclotis Mondolkiri, Cambodia GQ168916 Han et al. 2009 (unpublished)
M. eleryi Hunan, China GQ168908 Han et al. 2009 (unpublished)
M. fanjingshanensis Guizhou, China KT180333 He et al. 2015
M. fanjingshanensis Hunan, China MF543062 Huang et al. 2018
M. florium Papua New Guinea GQ168902 Ruedi et al. 2012
M. gracilis Taiwan, China GQ168900 Ruedi et al. 2012
M. gracilis Taiwan, China KJ198139 Kuo et al. 2014
M. gracilis Taiwan, China KJ198140 Kuo et al. 2014
M. gracilis Taiwan, China KJ198141 Kuo et al. 2014
M. hilgendorfi South Korea GQ168909 Han et al. 2009 (unpublished)
M. leucogaster (hilgendorfi) South Korea KM893454 Yoon & Park, 2014
M. leucogaster (hilgendorfi) South Korea NC025949 Yoon & Park, 2014
M. leucogaster (hilgendorfi) Japan AB085733 Sakai et al. 2003
M. leucogaster (hilgendorfi) China KX467598 Luo et al. 2016 (unpublished)
M. huttonii China KU521385 Zhang et al. 2016 (unpublished)
M. aff. huttonii Xizang, China PQ412943 (XZ2023052) This study
M. aff. huttonii Xizang, China PQ412944 (XZ2023099) This study
M. jaintiana India JQ044690 Ruedi et al. 2012
M. leucogaster Henan, China GQ168912 Han et al. 2009 (unpublished)
M. leucogaster China KF294301 Wang et al. 2013 (unpublished)
M. leucogaster China KF294302 Wang et al. 2013 (unpublished)
M. leucogaster China KF294303 Wang et al. 2013 (unpublished)
M. leucogaster China KF294304 Wang et al. 2013 (unpublished)
M. leucogaster China JX465367 Guo et al. 2012
M. liboensis Guizhou, China MK095626 Zeng et al. 2018
M. peninsularis Mondolkiri, Cambodia GQ168911 Han et al. 2009 (unpublished)
M. pluvialis India JQ044689 Ruedi et al. 2012
M. puta Taiwan, China GQ168901 Han et al. 2009 (unpublished)
M. recondita Taiwan, China KJ198269 Kuo et al. 2014
M. recondita Taiwan, China KJ198270 Kuo et al. 2014
M. shuipuensis Guizhou, China MK747249 Huang et al. 2019
M. suilla Java, Indonesia GQ168905 Han et al. 2009 (unpublished)
M. tubinaris Mondolkiri, Cambodia GQ168915 Han et al. 2009 (unpublished)
M. ussuriensis South Korea JX872285 Yoon et al. 2013
M. ussuriensis South Korea NC021119 Yoon et al. 2013
Murina sp2. Xizang, China PQ412942 (XZ2023094) This study
Murina sp3. Xizang, China PQ412941 (XZ2023048) This study

Appendix 2

The bat species used in morphological comparisons

Murina harrisoni (Chen et al. 2018):

Jiulianshan National Natural Reserve, Jiangxi, China: GZHU15090; GZHU15111; GZHU15124; GZHU15125; GZHU15142; GZHU15157; GZHU15159; GZHU15160; GZHU15161; GZHU15162.

Murina huttonii (Francis & Eger, 2012):

Uttar Pradesh, India: BMNH.79.11.21.685 (holotype); BMNH.14.7.10.32; Darjeeling: BMNH.16.3.25.25.

Murina annamitica (Francis & Eger, 2012):

Nakai Plateau, Khammouan Province, Laos: ROM 106492;

Ban Phoulan, Louangnamtha, Laos: ROM 118394; Nam Et – Phou Louey, Houaphan, Laos: EBD 25753; Tran Don, Quang Nam, Vietnam: ROM 111361;

Binh Phuoc Province, Vietnam: ZMMUS-184673; Annamite Mountains, Bolokhamxai, Laos: ROM 106467 (holotype).

Murina aenea (Soisook, 2013):

Halabala Wildlife Research Station, Wang, Narathiwat, Thailand: PSUZC-MM2012.211, ♀PSUZC-MM2005.6, PSUZC-MM2012.209, PSUZC-MM2012.210; Boripatr Waterfall, Ton Nga Chang WS., Rattaphum, Songkhla, Thailand: PSUZC-MM2005.7; Ulu Chemperoh, Janda Baik, Pahang, Malaysia: BMHN.64.770; Lampunat, Marawi, Kalimantan, Indonesia: MZB30648.

Murina fionae (Soisook, 2013):

Tam Tri, Tam Ky, Quang Nam, C. Vietnam: field number 025; ♂field number 12; ♂field number 18; Phong Nha, C. Vietnam: HZM.8.31764; HZM.6.31759; HZM.7.31762; Huong Hoa Nature Reserve, Quang Tri, C. Vietnam: HNHM.2007.50.3; HNHM.2007.50.4; Pu Mat NP., Nghe An, C. Vietnam: HZM.10.31776; Kon Cha Rang Nature Reserve, Gai Lai, C. Vietnam: HZM.11.32353; Ke Bang, Quang Binh, C. Vietnam: HZM.4.31761; Pu Huong, Nghe An, C. Vietnam: HNHM.2008.23.7; Ngoc Linh Nature Reserve, 10 Km SW Nuoc Xa, Quang Nam, C. Vietnam: ROM MAM 111292; Seima BCA, Mondol Kiri, E. Cambodia: HNHM.2005.81.16.

Murina guilleni (Soisook, 2013):

Rajjaprabha Dam, Ban Takhun, Surat Thani, S. Thailand: PSUZC-MM2010.22 (holotype), PSUZC-MM2010.23 (paratype); Ton Tae Waterfall, Pa Lien, Trang, S. Thailand: PSUZCMM2012.7 (paratype); Khao Nor Chuchi Reserve (=Khao Pra Bang Kram WS.), Krabi, S. Thailand: ROM110439; Wang Tai Nan Waterfall, Manang, Satun, S. Thailand: PSUZCMM 2013.15 (paratype); Ban Ton St., Khao Bantad WS, Phattalung, S. Thailand: PSUZC-MM2012.8; Yaroi Waterfall, Taleban NP., Satun, S. Thailand: PSUZC-MM2008.3; Ban Vang Pha, Songkhla, S. Thailand: PSUZCMM2007.350; Rajjaprabha Dam, Ban Takhun, Surat Thani, S. Thailand: PSUZC-MM2011.42; Makling Waterfall, Rattaphum, Songkhla, S. Thailand: PSUZC-MM2007.154; Great Nicobar Island, Nicobar Islands, India: HZM.14.35312 (holotype of M. sp. nov [A] subsp. nov.); Tillanchong, Nicobar Islands, India: HZM.12.35277 (paratype); Camorta Nicobar Islands, India: HZM.13.35278; Bompuka, Nicobar Islands, India: HNHM.2004.13.1 (paratype); Trinket, Nicobar Islands, India: HZM.15.35319 (paratype).

Murina cyclotis (Soisook, 2013):

Darjeeling, NE. India: BMNH.9.4.4.4 (holotype); Gopaldara, Darjeeling, NE. India: BMNH.16.3.25.28; Pashok, Darjeeling, NE. India: BMNH.16.3.25.29; Teesta Valley, West Bengal, NE. India: BMNH.20.6.24.1; Mousakande, Gammaduwa, Sri Lanka: BMNH.31.9.4.2 (holotype of M. eileenae); Island Jungle Resort, Chitwan NP, Nepal: BMNH.59.5.31.63; BMNH.66.5543; BMNH.72.42.56; ♂HNHM.98.7.3; Madanyan Forest, Manse Township, Kachin, N. Myanmar: HZM.17.35961; Sumka Uma, Kachin, N. Myanmar: BMNH.50.484; Chin Hills, W. Myanmar: BMNH.16.3.26.3; 50 miles from Kindat, Sagaing, W. Myanmar.: BMNH.16.3.26.4; BMNH.16.3.26.89; Hainan Island, China: field number B050023; Hy Nature Reserve, Bac Kan, N. Vietnam: NF.160906.4; NF.170906.5; NF.030706.6; NF.170906.4; NF.230706.4, Kim; Ke Bang, Quang Binh, C. Vietnam: HZM.31760; Pac Ban Village, Tuyen Quang, N. Vietnam: HNHM.98.3.3; Ben En NP., Thanh Hoa, Vietnam: HNHM.2000.84.3; Son La, N. Vietnam: HNHM.2010.42.3; field number T.291107.3; field number T.241107.2; field number T.251107.1; Bai Tu Long NP, Quang Ninh, N. Vietnam: field number T.050808.8; Cat Ba Island, Hai Phong, N. Vietnam: field number T.120806.2; field number T.230408.1; field number T.220908.1; Than Sa, Thai Nguyen, N. Vietnam: field number 11; Pu Hoat NR., Nghe An, C. Vietnam: field number B46; Cuc Phong NP., Ninh Binh, N. Vietnam: HZM.1.30708; HNHM.208.23.1; Pu Mat NP., Nghe An, C. Vietnam: HZM.3.31526; HZM.9.31777; Na Hang NR., Tuyen Quang, N. Vietnam: BMNH.1997.384; Me Linh, Vinh Phuc, N. Vietnam: field number T85; field number T03; field number T.270308.2; Ba Be NP., Bac Kan, N. Vietnam: HNHM.2007.27.7; ♀NTS1597; Tam Dao, Vinh Phuc, N. Vietnam: field number T.010908.10; ♀field number T.010908.6; Phuong Vien, Phu Tho, N. Vietnam: field number T.210708.2; field number T.260607.2; field number T.270607.1; PSUZC-MM.2011.54; Tamtri, Tam Ky, Quang Nam, C. Vietnam: field number T.290708.6, Xuan Son, Phu Tho, N. Vietnam; ♀field number 06; Ban Vieng, Khammouan, C. Laos: BMNH.1999.854; Tham Houay Si, 6.5 km SW. of Ban Vieng, Khammouan, C. Laos: BMNH.1999.51; Vang Vieng, Vientiane, C. Laos: field number BD100320.2; ♀field number BD100320.5; Phou Khao Kouay, Vientiane, C. Laos: ROM MAM 110673; Ban Keng Bit, Nam Kading, Khammouan, C. Laos: SMF85753; Sopkhang, Phongsaly, N. Laos: MHNG.1926.033; Doi Inthanon NP., Chom Thong, Chiang Mai, N. Thailand: BMNH.82.164; Tham Tab Tao, Fang, Chiang Mai, N. Thailand: BMNH.78.2383; Doi Pha Hom Pok, Fang, Chiang Mai, N. Thailand: BMNH.82.165; Chiangdao WS, Chiang Mai, N. Thailand: PSUZCMM2011.32; Klong Lan NP., Kampangphet, NW. Thailand: THNHM-M-821; Phu Suan Sai NP., Na Haew, Loei, NE. Thailand: PSUZC-MM2006.179; PSUZCMM2006.178; Phu Rua, Loei, NE. Thailand: TISTR54-7170; Mo Sing To, Khao Yai NP., 153 Nakhon Ratchasima, NE. Thailand: THNHM-M-735; Dong Sua Parn, Khao Yai NP., Nakhon Ratchasima, NE. Thailand: THNHM-M-775; Klong Klang Khao Ang Ru Nai WS., Chacherngsao, SE. Thailand: PSUZC-MM.2005.203; Phnom Samkos, Pursat, W. Cambodia: HNHM.2007.49.10; Seima BCA, Mondol Kiri, E. Cambodia: HNHM.2006.34.38; HNHM.2005.81.33; HNHM.2005.81.48; Bokor NP., Kampot, SW. Cambodia: HNHM.2006.34.2.

Murina peninsularis (Soisook, 2013):

Khao Pra Bang Kram WS, Klong Tom, Krabi, S. Thailand: PSUZC-MM.2012.9; ♂PSUZC-MM2012.11; ♂PSUZCMM2012.12; ♀PSUZC-MM2012.14; Huay Lek, Khao Nan NP., Nop Pitam, Nakhon Sithammarat, S. Thailand: PSUZC-MM2007.349; Khao Pu Khao Ya NP., Phattalung, S. Thailand: PSUZC-MM 2011.29; Kachong, Khao Bantad WS., Trang, S. Thailand: PSUZC-MM2007.348; Taleban NP., Satun, S. Thailand: PSUZC-MM2006.160; Talow Udang St., Tarutao Island, Satun, S. Thailand: PSUZC-MM2008.137; Pha Dum Waterfall, Ton Nga Chang WS, Songkhla, S. Thailand: PSUZCMM2012.16; PSUZC-MM2012.10; PSUZC-MM2012.12; PSUZC-MM2012.15; Ton Nga Chang WS, Songkhla, S. Thailand: Hala-Bala WS., Wang, Narathiwat, S. Thailand: PSUZC-MM2007.336; PSUZC-MM2011.30; PSUZC-MM2006.120; PSUZCMM2012.155; PSUZC-MM2012.156; PSUZC-MM2012.13; ♂PSUZC-MM2012.196; ♀PSUZC-MM2012.212; ♀PSUZCMM2012.213; Ulu Chemperoh, Janda Baik, Pahang, peninsular Malaysia: BMNH.64.771 (holotype); BMNH.64.772 (paratype); Gunong Benom Base Camp, Bentong, Pahang, peninsular Malaysia: BMNH.73.630; BMNH.67.1607; Taman Negara, Pahang, peninsular Malaysia: TK153526,; Kuala Lompat, Pahang, peninsular Malaysia: CMF920703-03; CMF920705-03; Krau Wildlife Reserve, Pahang, peninsular Malaysia: S401006; Penang, peninsular Malaysia: BMNH.1880.744; Sungai Relembany Camp, Ulu Setiu, Besut, Terengganu, peninsular Malaysia: BMNH.75.1294; Pahang, peninsular Malaysia: BMNH.73.631; Batu Pahat, Kangar, Perlis, peninsular Malaysia: BMNH.68.845;

Fraser Hill, Selangor, peninsular Malaysia: BMNH.64.773; Lojing Highlands, Kelantan, peninsular Malaysia: TK172744; Melinau, Gunung Mulu NP., Sarawak, Borneo: BMNH.78.1543; Sepilok, Sabah, Borneo: BMNH.82.556; BMNH.84.2019; TK168706; Lumerau, Sabah, Borneo: BMNH.84.2020.

Murina lorelieae (Eger & Lim, 2011; Li et al. 2017):

Diding Headwater Forest Nature Preserve, Guangxi Zhuang Autonomous Region, China: ROM MAM 116171 (holotype);

Ailao Nature Reserve, Yunnan Province, China: GZHU14231, GZHU14261, GZHU14268, GZHU14270, GZHU14271, GZHU14275, GZHU14279, GZHU14280, GZHU14281, GZHU14282.

Murina liboensis (Zeng et al. 2018):

Libo County, Guizhou Province, China: N20160727021 (paratype); N20160727022 (holotype); N20160727023 (paratype); N20160727024 (paratype); N20160727025 (paratype).

Murina rozendaali (Soisook, 2013):

Halabala Wildlife Research Station, Wang, Narathiwat: PSUZC-MM2012.206, PSUZC-MM2012.207, PSUZC-MM2012.208, field number PS130824.3, field number PS130824.4, field number PS130824.6, field number PS130824.7; Gomantong, Sabah, Malaysia: BMNH.83.360 (holotype), BMNH.84.2025; Krau Wildlife Reserve, Malaysia: Pahang BMNH.1999.300, BMNH.1999.301; Park Monggis Substation, Kinabalu NP., Sabah, Malaysia: TTU-M 108241; Suatan, Kaltim, Kalimantan, Indonesia: MZB26735; Way Canguk, Lampung, Sumatra, Indonesia: MZB34991.

Murina tiensa (Csorba et al. 2008):

Na Ri district of Kim Hy Nature Reserve, Bac Kan Province, Vietnam: HZM.2.38178 (holotype); Bach Thong district of Kim Hy Nature Reserve, Bac Kan Province, Vietnam: HNHM 2007.28.1 (paratype); Na Ri district of Kim Hy Nature Reserve, Bac Kan Province, Vietnam: NF.301006.1 (paratype); Pu Mat National Park, Nghe An Province, Vietnam: HZM 1.31525.

Murina aurata (Maeda 1980):

Moupin, Sichuan, China: 1870-590 (holotype); 1870-590a (paratype).

Murina pluvialis (Ruedi et al. 2012):

Khasi Hills, Meghalaya, India: MHNG1976.071.

Murina jaintiana (Ruedi et al. 2012):

Jaintia Hills, Meghalaya, India: MHNG1976.072; Chin Hill, Chin State, Myanmar: BM(NH) 16.3.26.5; BM(NH) 16.3.26.7; BM(NH) 16.3.26.8; BM(NH) 16.3.26.85; BM(NH) 16.3.26.86; BM(NH) 16.3.26.87; BM(NH) 16.3.26.88; HNHM2000.20.1.

Murina hkakaboraziensis (Soisook et al. 2017):

Hkakabo Razi National Park, Putao Township, Kachin, Myanmar: PS160218.6 (holotype).

Murina eleryi (Soisook, 2013):

Doi Inthanon, Chom Thong, Chiang Mai, Thailand: BMNH.82.162 (labeled as M. aurata); Kim Hy Nature Reserve, An Tunh Commune, Na Rai District, Bac Kan Province, Vietnam: HZM.1.39006 (paratype); exact locality not available, Vietnam: field number T120 (ROM field no. 29013); Muong Do Commune, Phu Yen District, Son La Province, Vietnam: field number T.241107.1.

Murina jinchui (Yu et al. 2020):

Wolong, Sichuan, China: GZHU 14453 (paratype), GZHU 14454 (paratype), GZHU 14455 (paratype), GZHU 14463 (holotype), GZHU 14461 (paratype), GZHU 14462 (paratype)

Appendix 3

A key to the Murina species in the southeastern QTP

1 Crown area of C1 approximately equal to or less than that of P4; Crown area of P2 approximately half or less than that of P4; I2 situated anterior to I3 suilla-type 2
Crown area of C1 approximately equal to or less than that of P4; Crown area of P2 approximately two-thirds or more than that of P4; I2 situated lateral to I3 cyclotis-type 6
2 Dorsal fur with shiny guard hairs; 3
Dorsal fur without shiny guard hairs; 4
3 P4 exceeds C1 in height M. aurata
P4 is approximately equal to C1 in height 5
4 Smaller size, FA less than 31.10 mm; domed braincase; less developed P4 M. jaintiana
Larger size, FA more than 31.10 mm; braincase flat; more developed P4 M. jinchui
5 Mesostyles of M1 and M2 well developed, with a W-shaped indentation in the labial side; ventral fur whitish gray M. hkakaboraziensis
Mesostyles of M1 and M2 reduced, with a U-shaped indentation in the labial side; ventral fur creamy white M. eleryi
6 Smaller size, FA less than 33.00 mm in males and 36.80 mm in females 7
Larger size, FA more than 33.00 mm in males and 36.80 mm in females 8
7 Mesostyles of M1 and M2 are well developed, with a W-shaped indentation in the labial side; ventral fur has distinct color bands M. lorelieae
Mesostyles of M1 and M2 reduced, with a U-shaped indentation in the labial side; ventral fur has indistinct color bands M. cyclotis
8 Talonids of M1 and M2, approximately two-thirds that of trigonids; sagittal crest absent M. chayuensis sp. nov.
Talonids of M1 and M2, approximately equal to those of trigonids; sagittal crest developed 9
9 Mesostyles of M1 and M2 well developed, with a W-shaped indentation in the labial side; interfemoral membrane with reddish-brown hairs M. huttonii
Mesostyles of M1 and M2 reduced, with a U-shaped indentation in the labial side; interfemoral membrane without reddish-brown hairs M. pluvialis

Supplementary material

Supplementary material 1 

Additional information

Pengfei Luo, Mingle Mao, Chengrui Yan, Qingqing He, Qin Yang, Huaiqing Deng, Ning Xiao, Jiang Zhou

Data type: docx

Explanation note: fig. S1. Results of the analysis of species definition using ASAP. fig. S2. Results of the analysis of species definition using bPTP. fig. S3. Results of the analysis of species definition using mPTP. table S1. External and cranial measurements (in mm) of each specimen from this study. table S2. External and cranial measurements (in mm) of ‘suilla’ type species distributed in Qinghai-Tibetan Plateau.

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (3.42 MB)
login to comment