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Abstract

The classification and identification of species within the genus Pseudechiniscus Thulin, 1911 has been considered almost a Sisyphe-
an work due to an extremely high homogeneity of its members. Only recently have several contributions made progress in the tax-
onomy feasible through their detailed analyses of morphology and, crucially, by the re-description of the ancient, nominal species P. 
suillus (Ehrenberg, 1853). Herein, we focus on the Japanese representatives of this genus: P. asper, a rare species originally described 
from Hokkaido, and a new species P. shintai. Both taxa belong to the widespread suillus-facettalis complex. Detailed descriptions 
entailing DNA barcoding of four markers and illustrations of the ventral pillar patterns are indispensable for an accurate delineation 
of species within this genus.
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Introduction

Tardigrades are poorly known micrometazoans famous 
for their ability to enter cryptobiosis (Møbjerg et al. 
2011). This phylum is now widely accepted as a lineage 
within the superclade Ecdysozoa (Campbell et al. 2011) 
and related to the Onychophora and Arthropoda within 
the Panarthropoda (Giribet and Edgecombe 2017). In 
the last decade, tens of new species have been described, 
which reflects limited understanding of tardigrade diver-
sity (Bartels et al. 2016). Studies on the Japanese tardi-
grades have a long history, resulting in over 150 species 
reported from this archipelago (Suzuki 2017). Amongst 
them, ca. 40 spp. (> 20%) belong to the limno-terrestri-
al heterotardigrade family Echiniscidae (Gąsiorek et al. 
2018a, Suzuki et al. 2018), a distinct group characterised 
by the development of cuticular plates on the dorsal sur-
face of the body (Kristensen 1987).

Recent advances in the taxonomy of one of the echiniscid 
genera, Pseudechiniscus Thulin, 1911, are a good illustra-
tion of the progress currently being made in the classifica-
tion of tardigrades. Firstly, Tumanov (2020) discussed and 
re-organised the morphological nomenclature after a me-
ticulous analysis of various members of Pseudechiniscus 
and he concluded that several species are unidentifiable, ac-
cording to current taxonomic standards. Cesari et al. (2020) 
demonstrated high genetic variability amongst members of 
the speciose suillus-facettalis complex, implying that the 
species richness in the genus may be underestimated. Final-
ly, the ability to confidently describe new Pseudechiniscus 
species was enabled by the modern diagnosis of P. suillus 
(Ehrenberg, 1853), one of enigmatic tardigrade taxa de-
scribed in the 19th century (Grobys et al. 2020). In summary, 
better understanding of morphology, genetic disparities and 
ontogenetic shifts (Gąsiorek et al. 2019, Morek et al. 2019) 
has facilitated intensification in tardigrade research.
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In this contribution, we concentrate on the Japanese 
Pseudechiniscus species. Pseudechiniscus asper Abe et 
al., 1998 is re-described and P. shintai sp. nov. is described, 
based on specimens from Aomori Prefecture (Northern 
Honshu). A brief review of Japanese Pseudechiniscus re-
cords is provided, concluding that they should be treated as 
unreliable and require formal confirmation through a new, 
large-scale sampling effort undertaken throughout Japan. 
Such a conclusion is in line with new discoveries of spe-
cies complexes in numerous tardigrade genera (e.g. Gui-
detti et al. 2019, Stec et al. 2020, Roszkowska et al. 2020).

Materials and methods
Sample collection and processing

Specimens belonging to two species of the genus Pseude-
chiniscus were extracted from four moss samples (JP.012–
5) collected from trees in Asamushi, Northern Honshu, 
Japan (ca. 40°54'03.6"N, 140°51'58"E, 30 m a.s.l.; R.M. 
Kristensen leg. on 24 July 2019). Samples were processed 
according to the protocol developed by Dastych (1980) 
with further amendments by Stec et al. (2015). The animals 
were used in two analyses: (I) qualitative and quantitative 
morphology, investigated under phase contrast microsco-
py (PCM) and (II) DNA sequencing (see descriptions for 
details). Each specimen was observed in a drop of distilled 
water on a temporary slide under a 400× magnification to 
confirm its identification prior to analysis.

Microscopy, imaging and morphometrics

Permanent microscope slides were made using Hoyer’s 
medium and examined using an Olympus BX53 PCM 
associated with an Olympus DP74 digital camera. All 
figures were assembled in Corel Photo-Paint X7. All 
measurements are given in micrometres (μm) and were 
performed under PCM. Structures were measured only 
when not broken, deformed or twisted and their orienta-
tions were suitable. Body length was measured from the 
anterior to the posterior end of the body, excluding the 
hind legs. The sp ratio is the ratio of the length of a given 
structure to the length of the scapular plate expressed as 
a percentage (Dastych 1999). Morphometric data were 

handled using the Echiniscoidea ver. 1.3 template, avail-
able from the Tardigrada Register, www.tardigrada.net 
(Michalczyk and Kaczmarek 2013). Importantly, all spe-
cies designated as dubious or with insufficient descrip-
tions (Grobys et al. 2020, Tumanov 2020), were discard-
ed from the differential diagnoses.

Genotyping and genetic comparisons

DNA was extracted from individual animals following a 
Chelex 100 resin (Bio-Rad) extraction method (Casquet et 
al. 2012, Stec et al. 2015). Hologenophores were obtained 
for both species (Pleijel et al. 2008). Four DNA fragments 
were sequenced: three nuclear and one mitochondrial (Ta-
ble 1) in the case of P. shintai sp. nov.; and three for P. 
asper. The COI fragment was amplifiable for P. asper but, 
due to a high number of double peaks, effective sequence 
cleaning was not possible. All fragments were amplified 
and sequenced, according to the protocols described in 
Stec et al. (2015). The obtained alignments were edited 
and checked manually in BioEdit v7.2.6.1 (Hall 1999) 
and ClustalW Multiple Alignment tool (Thompson et al. 
1994) was used in the alignment of COI for P. shintai sp. 
nov. and other confidently identified species (Grobys et al. 
2020, Roszkowska et al. 2020). MEGA7.0.26 (Kumar et 
al. 2016) was used for calculation of uncorrected pairwise 
distances (Srivathsan and Meier 2012).

Results
Systematic account

Phylum: Tardigrada Doyère, 1840
Class: Heterotardigrada Marcus, 1927
Order: Echiniscoidea Richters, 1926
Family: Echiniscidae Thulin, 1928
Genus: Pseudechiniscus Thulin, 1911

Pseudechiniscus asper Abe, Utsugi & Takeda, 1998
Figures 1, 2, 5A, Tables 2, 3

Locus typicus and type material. ca. 42°46'N, 141°24'E, 
250 m a.s.l.; vicinity of the Lake Shikotsu (Chitose, 

Table 1. Primers and references for specific protocols for amplification of the four DNA fragments sequenced in the study.

DNA fragment Primer name Primer 
direction

Primer sequence (5’-3’) Primer source PCR programme*

18S rRNA 18S_Tar_Ff1 forward AGGCGAAACCGCGAATGGCTC Stec et al. (2017) Zeller (2010)
18S_Tar_Rr2 reverse CTGATCGCCTTCGAACCTCTAACTTTCG Gąsiorek et al. (2017)

28S rRNA 28S_Eutar_F forward ACCCGCTGAACTTAAGCATAT Gąsiorek et al. (2018b) Mironov et al. (2012)
28SR0990 reverse CCTTGGTCCGTGTTTCAAGAC Mironov et al. (2012)

ITS-1 ITS1_Echi_F forward CCGTCGCTACTACCGATTGG Gąsiorek et al. (2019) Wełnicz et al. (2011)
ITS1_Echi_R reverse GTTCAGAAAACCCTGCAATTCACG

COI bcdF01 forward CATTTTCHACTAAYCATAARGATATTGG Dabert et al. (2008) Wełnicz et al. (2011)
bcdR04 reverse TATAAACYTCDGGATGNCCAAAAAA

* – All PCR programmes are also provided in Stec et al. (2015).
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South-western Hokkaido, Japan); foliose lichen Phaeo-
physcia imbricata (Physciaceae) on the trunk of a maple 
(Acer japonicum). Collector: Kazuo Utsugi. Holotype: 
adult male on the slide NSMT-Tg 44 deposited in the Na-
tional Museum of Nature and Science in Tokyo.
Additional material. Four females on the slides JP.012.01, 
JP.013.01–2, JP.014.01 and a male on the slide JP.012.04. 
Hologenophores: JP.012.01, 4, JP.013.02.

Etymology. From Latin asper = rough, referring to the 
irregular surface of dorsal plates. Adjective in the nom-
inative singular.

Description. Mature females (i.e. from the third instar 
onwards; measurements in Table 2). Body dark orange, 
with round black eyes present or dissolving soon after 
mounting (Fig. 1A, B). Member of the suillus-facettalis 
complex: dome-shaped (hemispherical) cephalic papillae 
(secondary clavae) and minute (primary) clavae; peri-
buccal cirri with poorly developed cirrophores. Cirrus A 
short, with cirrophore.

Dorsal plates well-sclerotised as for a Pseudechiniscus 
species, clearly demarcated from each other, with 
Pseudechiniscus-type sculpturing, i.e. large endocuticular 
pillars protruding through the epicuticle and visible as 
dark dots in PCM (Fig. 2A). Striae absent. The cephalic 
plate pentapartite, with the anterior bi-halved portion and 
three posterior portions, roughly equal in size (Fig. 1A, B). 
The cervical (neck) plate absent. The scapular plate with 
a transverse suture, separating a broader anterior portion 
and narrower posterior portion (Figs 1B, 2A). Three 
median plates: m1–2 bipartite, with much reduced, narrow 
posterior portions, m3 unipartite and large (Fig. 2A) with 
two pairs of lateral intersegmental platelets flanking the 
borders of m1–2. Two pairs of large segmental plates, 
their posterior portions exhibiting thickenings at positions 
C and D – the latter usually more pronounced (Figs 1A, 
B, 2). The pseudosegmental plate IV’ divided by a median 
longitudinal suture; the posterior margin of the plate with 
a pair of short triangular projections (Figs 1A, B, 2A). 
The caudal (terminal) plate with short incisions that may 
be sclerotised (compare Fig. 1A with Fig. 1B).

Ventral cuticle with a faint species-specific pattern 
reaching the lateroventral sides of the body (Figs 2B, 5A), 

Figure 1. Habitus of Pseudechiniscus asper (PCM): A, B – fe-
males; C – male hologenophore. Insert shows claws III. Arrow-
heads indicate thickenings at the lateral positions C and D. List 
of abbreviations: c – caudal plate, cA – cirrus A, ce – cirrus ex-
ternus, ci – cirrus internus, cp – cephalic plate, m1–3 – median 
plates, ps – pseudosegmental plate IV’, sI–II – paired segmental 
plates, sc – scapular plate. Scale bars: in μm.

Figure 2. Sculpturing of Pseudechiniscus asper (PCM): A – 
dorsal; B – ventral. White arrowheads indicate thickenings at 
the lateral positions C and D, black arrowheads indicate claw 
spurs and empty arrows indicate papillae IV. Scale bars: in μm.
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Table 2. Measurements [in µm] of selected morphological structures of mature females of Pseudechiniscus asper mounted in Hoy-
er’s medium (N – number of specimens/structures measured, RANGE refers to the smallest and the largest structure amongst all 
measured specimens; SD – standard deviation).

CHARACTER N RANGE MEAN SD
µm sp µm sp µm sp

Body length 2 178 – 203 712 – 810 191 761 18 70
Scapular plate length 2 25.0 – 25.1 – 25.1 – 0.1 –
Head appendages lengths
Cirrus internus 3 9.2 – 11.4 42.0 – 45.4 10.4 43.7 1.1 2.4
Cephalic papilla 3 3.5 – 4.7 13.9 – 18.8 4.1 16.4 0.6 3.4
Cirrus externus 3 14.8 – 19.4 59.2 – 77.3 16.6 68.2 2.5 12.8
Clava 3 4.3 – 5.9 17.2 – 20.3 5.1 18.8 0.8 2.2
Cirrus A 3 24.1 – 30.8 96.4 – 122.7 27.3 109.6 3.4 18.6
Cirrus A/Body length ratio 2 14% – 15% – 14% – 1% –
Papilla on leg IV length 4 3.0 – 3.6 12.0 – 13.9 3.4 13.0 0.3 1.4
Claw 1 heights
Branch 4 8.8 – 10.7 40.2 – 40.4 9.9 40.3 0.8 0.1
Spur 4 1.2 – 1.8 4.8 – 6.4 1.6 5.6 0.3 1.1
Spur/branch length ratio 3 12% – 20% – 16% – 4% –
Claw 2 heights
Branch 3 8.5 – 9.8 38.0 – 39.0 9.3 38.5 0.7 0.7
Spur 3 1.2 – 1.4 4.8 – 5.2 1.3 5.0 0.1 0.3
Spur/branch length ratio 3 13% – 16% – 14% – 2% –
Claw 3 heights
Branch 2 9.2 – 10.1 36.8 – 40.2 9.7 38.5 0.6 2.4
Spur 2 1.0 – 1.8 4.0 – 7.2 1.4 5.6 0.6 2.2
Spur/branch length ratio 2 11% – 18% – 14% – 5% –
Claw 4 heights
Branch 2 11.6 – 11.6 46.2 – 46.2 11.6 46.2 0.0 ?
Spur 2 2.0 – 2.0 8.0 – 8.0 2.0 8.0 0.0 ?
Spur/branch length ratio 2 17% – 17% – 17% – 0% –

being a typical reticulum composed of large multiangular, 
longitudinal shapes connected by belts of pillars. Pillars 

are particularly poorly visible between legs I and II (Fig. 
2B). The subcephalic zone with a wide patch of pillars 
(Fig. 5A). Sexpartite gonopore located anteriorly of legs 
IV and a trilobed anus between legs IV.

Pedal plates and dentate collar IV absent; instead, 
large patches of pillars are present centrally on each leg 
(Fig. 1A, B). Pulvini indistinct. No papilla or spine on leg 
I visible in PCM, a papilla on leg IV present (Figs 1B, 
2). Claws IV higher than claws I–III; internal claws with 
needle-like spurs positioned at ca. 1/4–1/5 of the claw 
height (Fig. 1A, insert).

Mature males (i.e. from the second instar onwards; 
measurements in Table 3). Smaller than females, with 
slender body (Fig. 1C). Cirri externi approaching the 
length of cirri A. Pseudosegmental projections in the form 
of teeth or wide lobes. Gonopore circular.

Juveniles. Unknown.
Larvae. Unknown.
Eggs. Unknown.

DNA sequences. Single haplotypes in 18S rRNA 
(MT645083, 843 bp), 28S rRNA (MT645081, 716 bp) 
and ITS-1 (MT645085, 631 bp) were obtained.

Remarks. This is the third record of this very rare spe-
cies, which, in addition to the type locality, has also been 
found on Mount Taibai, Shaanxi, China (Li et al. 2005). 
In the original description, only one male was found to 
possess triangular projections, ending with papillate tips, 
on the pseudosegmental plate (Abe et al. 1998). However, 

Table 3. Measurements [in µm] of selected morphological 
structures of mature males of Pseudechiniscus asper mounted 
in Hoyer’s medium. Measurements of the holotype taken from 
Abe et al. (1998).

CHARACTER ♂ Holotype
µm sp µm

Body length 159 675 166
Scapular plate length 23.5 – ?
Head appendages lengths
Cirrus internus 11.4 48.5 8.0
Cephalic papilla 4.7 20.0 ?
Cirrus externus 14.8 63.0 12.0
Clava 3.5 14.9 1.5
Cirrus A 19.4 82.6 20.0
Cirrus A/Body length ratio 12% – 12%
Papilla on leg IV length 3.7 15.7 ?
Claw 1 heights
Branch ? ? ca. 9.0
Spur ? ? ?
Spur/branch length ratio ? – ?
Claw 2 heights
Branch 11.1 47.2 ca. 9.0
Spur 0.9 3.8 ?
Spur/branch length ratio 8% – ?
Claw 3 heights
Branch 10.9 46.4 ca. 9.0
Spur ? ? ?
Spur/branch length ratio ? – ?
Claw 4 heights
Branch 13.1 55.7 ca. 11.0
Spur 1.0 4.3 ?
Spur/branch length ratio 8% – ?

http://www.ncbi.nlm.nih.gov/nuccore/MT645083
http://www.ncbi.nlm.nih.gov/nuccore/MT645081
http://www.ncbi.nlm.nih.gov/nuccore/MT645085
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the variability in the shape of the pseudosegmental pro-
jections has previously been noted (Fontoura et al. 2010), 
thus the lobate form of these structures in the Chinese and 
Japanese (Honshu) specimens is not surprising. Moreover, 
Abe et al. (1998) did not illustrate the complete ventral 
pattern of this species (most likely because of the quality 
of the microscope used) and omitted the swelling or thick-
ening of the armour at position C, which is weakly devel-
oped in this species. As Asamushi lies only ca. 200 km 
southwards from the shores of Lake Shikotsu (however, 
the Blakiston’s Line was designated to separate faunae of 
large vertebrates of Honshu and Hokkaido; see Kawamura 
2007), the formal amendments to the original description 
presented here are justified given that DNA barcodes com-
pensate the scarcity of specimens used in morphometrics.

Phenotypic differential diagnosis. Taxa most similar to 
P. asper, i.e. those possessing pseudosegmental projec-
tions, can be easily distinguished from this species, based 
on the presence of striae (even rudimentary striae are 
absent in P. asper; see Fig. 2 in Fontoura et al. 2010 for 
microphotographs of other species), and/or by the lack of 
thickenings at the lateral positions (Abe et al. 1998).

Pseudechiniscus shintai sp. nov.
http://zoobank.org/1BC6B3B3-16EF-4442-AD6D-CCD357C47C31
Figures 3, 4, 5B, Tables 4, 5

Locus typicus and type material. ca. 40°54'03.6"N, 
140°51'58"E, 30 m a.s.l.; Asamushi-Onsen Forest Park 
(Aomori, Northern Honshu, Japan); mosses from tree 
trunks. Collector: R.M. Kristensen. Holotype and al-
lotype: mature female and male on slide JP.013.01. 
Eight juveniles on the slides JP.012.02–3, JP.013.03–4, 
JP.014.01–3, JP.015.01. Hologenophores: JP.012.02–3, 
JP.013.03–4. Holotype, allotype and the majority of para-
types (slides JP.012.02–3, JP.013.01, JP.013.03–4 and 
JP.015.01) are deposited in the Institute of Zoology and 
Biomedical Research, Jagiellonian University, Kraków, 
Poland; other paratypes (slides JP.014.01–3; NHMD–
669705–7) are deposited in the Natural History Museum 
of Denmark, University of Copenhagen, Denmark.

Etymology. The name is a patronym honouring Shinta Fu-
jimoto, an excellent Japanese tardigradologist specialising 
in marine Heterotardigrada. Noun in the genitive singular.

Description. Mature female (i.e. the third or latter in-
star; measurements in Table 4). Body orange, with min-
ute, round black eyes that are absent after mounting 
(Figs 3A, 4A). Member of the suillus-facettalis com-
plex: dome-shaped (hemispherical) cephalic papillae 
(secondary clavae) and minute (primary) clavae; peri-
buccal cirri with poorly developed cirrophores. Cirrus A 
short, with cirrophore.

Dorsal plates poorly sclerotised, but clearly demar-
cated from each other, with the Pseudechiniscus-type 

sculpturing, i.e. endocuticular pillars protruding through 
the epicuticle and visible as dark dots in PCM (Fig. 4A). 
Striae absent; epicuticular ornamentation visible as dark-
er belts on all dorsal plates. The cephalic plate pentapar-
tite, with the two anterior portions and three posterior 
portions approximately equal in size (Fig. 4A). The cer-
vical (neck) plate absent. The scapular plate with sutures, 
separating a wide anterior portion from the four posterior 
portions (Fig. 4A). Three median plates: m1–2 bipartite; 

Figure 3. Habitus of Pseudechiniscus shintai sp. nov. (PCM): 
A – female (holotype); B – male (allotype). Insert shows claws 
I. Scale bars: in μm.

Figure 4. Sculpturing of Pseudechiniscus shintai sp. nov. 
(PCM): A – dorsal; B – ventral. Scale bars: in μm.

http://zoobank.org/1BC6B3B3-16EF-4442-AD6D-CCD357C47C31
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Table 4. Measurements [in µm] of selected morphological 
structures of mature female (holotype) and male (allotype) of 
Pseudechiniscus shintai sp. nov. mounted in Hoyer’s medium.

CHARACTER Holotype ♀ Allotype ♂
µm sp µm sp

Body length 196 735 178 754
Scapular plate length 26.7 – 23.6 –
Head appendages lengths
Cirrus internus 6.8 25.5 8.2 34.7
Cephalic papilla 4.0 15.0 3.5 14.8
Cirrus externus 12.8 47.9 12.5 53.0
Clava 5.0 18.7 4.0 16.9
Cirrus A 23.1 86.5 25.3 107.2
Cirrus A/Body length ratio 12% – 14% –
Papilla on leg IV length 3.1 11.6 2.3 9.7
Claw 1 heights
Branch 8.7 32.6 7.3 30.9
Spur 2.2 8.2 1.4 5.9
Spur/branch length ratio 25% – 19% –
Claw 2 heights
Branch 8.7 32.6 7.0 29.7
Spur 2.0 7.5 1.6 6.8
Spur/branch length ratio 23% – 23% –
Claw 3 heights
Branch 8.8 33.0 7.2 30.5
Spur 1.9 7.1 1.1 4.7
Spur/branch length ratio 22% – 15% –
Claw 4 heights
Branch 9.2 34.5 8.8 37.3
Spur 1.7 6.4 1.8 7.6
Spur/branch length ratio 18% – 20% –

Figure 5. Schematic drawings of ventral sculpturing patterns: A – Pseudechiniscus asper; B – Pseudechiniscus shintai sp. nov.

A B

m3 unipartite (Figs 3A, 4A); four pairs of lateral interseg-
mental platelets flanking the borders of m1–2. Two pairs 
of large segmental plates. The pseudosegmental plate IV’ 
divided by a median longitudinal suture; the posterior 
margin of the plate can be wide (Fig. 4A), but without 
lobes or teeth (Fig. 3A). The caudal (terminal) plate with 
short sclerotised incisions (Figs 3A, 4A).

Ventral cuticle with a pronounced species-specific 
pattern reaching the lateroventral sides of the body (Figs 
4B and 5B), being a typical reticulum composed of large 
multiangular, longitudinal shapes joined by belts of pil-
lars. The subcephalic zone with a wide belt of pillars. 
Sexpartite gonopore located anteriorly of legs IV and a 
trilobed anus between legs IV.

Pedal plates and dentate collar IV absent, instead 
large patches of pillars are present centrally on each leg 
(Fig. 3A). Pulvini indistinct. A papilla on leg I undetect-
able in PCM and a papilla on leg IV present, but scarcely 
visible. Claws I–IV of similar heights. External claws 
on all legs smooth. Internal claws with minuscule, thin 
spurs positioned at ca. 1/5 of the claw height. (Fig. 3A, 
insert).

Mature male (i.e. the second or latter instar; measure-
ments in Table 4). No significant differences from females 
(Fig. 3B). Gonopore circular.

Juveniles (i.e. the second instar; measurements in Ta-
ble 5). A morphometric gap exists between adult females 
and juveniles. Phenotypically similar to adults. Gonopore 
absent.

Larvae. Unknown.
Eggs. Unknown.

DNA sequences. Single haplotypes in 18S rRNA 
(MT645084, 900 bp), 28S rRNA (MT645082, 754 bp) and 
ITS-1 (MT645086, 622 bp), but two in COI (MT644270-
1, 510 bp) were found.

Phenotypic differential diagnosis. The species was com-
pared with the members of the suillus-facettalis complex 
(with hemispherical cephalic papillae) and other Pseude-

http://www.ncbi.nlm.nih.gov/nuccore/MT645084
http://www.ncbi.nlm.nih.gov/nuccore/MT645082
http://www.ncbi.nlm.nih.gov/nuccore/MT645086
http://www.ncbi.nlm.nih.gov/nuccore/MT644270-1
http://www.ncbi.nlm.nih.gov/nuccore/MT644270-1
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Table 5. Measurements [in µm] of selected morphological structures of juveniles of Pseudechiniscus shintai sp. nov. mounted in 
Hoyer’s medium (N – number of specimens/structures measured, RANGE refers to the smallest and the largest structure amongst 
all measured specimens; SD – standard deviation).

CHARACTER N RANGE MEAN SD
µm sp µm sp µm sp

Body length 6 93 – 172 597 – 730 144 682 27 49
Scapular plate length 7 13.2 – 24.1 – 21.7 – 3.6 –
Head appendages lengths
Cirrus internus 7 5.2 – 8.9 22.7 – 37.4 7.1 31.2 1.2 5.2
Cephalic papilla 6 2.0 – 4.3 11.9 – 18.4 3.0 14.5 0.8 2.2
Cirrus externus 7 6.1 – 12.1 41.9 – 51.7 10.0 46.8 1.9 3.6
Clava 2 3.9 – 4.4 17.6 – 18.8 4.2 18.2 0.4 0.8
Cirrus A 4 17.1 – 26.0 84.2 – 111.1 22.2 96.8 3.7 11.0
Cirrus A/Body length ratio 3 12% – 16% – 14% – 2% –
Papilla on leg IV length 4 2.9 – 3.9 12.6 – 16.5 3.3 14.3 0.5 1.6
Claw 1 heights
Branch 5 5.9 – 7.8 30.5 – 44.7 7.1 34.9 0.7 5.6
Spur 5 0.9 – 1.7 5.9 – 7.4 1.4 6.7 0.3 0.5
Spur/branch length ratio 5 15% – 23% – 20% – 3% –
Claw 2 heights
Branch 6 6.7 – 8.9 30.1 – 37.2 7.7 33.2 0.8 2.3
Spur 6 1.1 – 1.7 5.1 – 7.1 1.4 5.9 0.2 0.8
Spur/branch length ratio 6 16% – 20% – 18% – 2% –
Claw 3 heights
Branch 6 5.3 – 9.0 29.2 – 40.2 7.2 34.3 1.2 4.0
Spur 6 1.0 – 1.8 5.5 – 7.6 1.4 6.7 0.3 0.9
Spur/branch length ratio 6 18% – 21% – 19% – 1% –
Claw 4 heights
Branch 5 7.2 – 9.0 35.5 – 39.3 8.4 37.2 0.7 1.4
Spur 5 1.4 – 2.1 6.0 – 9.2 1.7 7.5 0.3 1.2
Spur/branch length ratio 5 16% – 23% – 20% – 3% –

chiniscus species lacking pseudosegmental projections. 
P. shintai sp. nov. is differentiated from:

1. P. angelusalas Roszkowska et al., 2020, described 
from Madagascar, by the shape of its cephalic papil-
lae (hemispherical in P. shintai sp. nov. vs. dactyloid, 
elongated in P. angelusalas) and by the presence of 
striae (striae absent in P. shintai sp. nov. vs. present, 
but poorly developed in P. angelusalas);

2. P. beasleyi Li et al., 2007, described from Qinling 
Mountains (China), by much shorter claws (5.3–9.2 μm 
in P. shintai sp. nov. vs. 9.1–13.1 μm in P. beasleyi);

3. P. chengi Xue et al., 2017, described from Ningxia 
(China), by body colour (orange in P. shintai sp. nov. 
vs. brown in P. chengi) and by the distribution of pil-
lars in the dorsal plates (sparsely distributed in P. shin-
tai sp. nov. vs. densely arranged in P. chengi);

4. P. dastychi Roszkowska et al., 2020, described from 
the Argentine Islands (maritime Antarctic), by the 
shape of the cephalic papillae (hemispherical in P. 
shintai sp. nov. vs. dactyloid, elongated in P. dastychi) 
and by the presence of striae (striae absent in P. shintai 
sp. nov. vs. present in P. dastychi);

5. P. ehrenbergi Roszkowska et al., 2020, described from 
Northern Italy and reported from Mongolia (Cesari et 
al. 2020), by the subdivision of the scapular plate (with-
out the median longitudinal suture in P. shintai sp. nov. 
vs. with the median longitudinal suture in P. ehrenber-
gi) and by the presence of a rudimentary papilla I (ab-
sent in P. shintai sp. nov. vs. present in P. ehrenbergi);

6. P. indistinctus Roszkowska et al., 2020, described 
from Norway, by the shape of its cephalic papillae 
(hemispherical in P. shintai sp. nov. vs. dactyloid, 
elongated in P. indistinctus) and by the presence of 
striae (striae absent in P. shintai sp. nov. vs. present in 
P. indistinctus);

7. P. lacyformis Roszkowska et al., 2020, described from 
Norway, by the length of its cephalic appendages: 
cirrus internus (5.2–8.9 μm in P. shintai sp. nov. vs. 
10.6–14.0 μm in P. lacyformis), cirrus externus (6.1–
12.8 μm in P. shintai sp. nov. vs. 14.1–19.4 μm in P. 
lacyformis) and cirrus A (17.1–26.0 μm in P. shintai 
sp. nov. vs. 26.5–35.0 μm in P. lacyformis);

8. P. suillus (Ehrenberg, 1853), reliably recorded only 
from Italy (Grobys et al. 2020), by the length of cirrus 
A (17.1–26.0 μm in P. shintai sp. nov. vs. 28.4–34.4 
μm in P. suillus) and by the presence of males (present 
in P. shintai sp. nov. vs. absent in P. suillus);

9. P. xiai Wang et al., 2018, described from Ningxia (Chi-
na), by the contrasting dorsal sculpturing (epicuticular 
ornamentation darker and more pronounced in P. xiai) 
and by the morphology of the pseudosegmental plate 
IV’ (paired in P. shintai sp. nov. vs. unpaired in P. xiai).

Moreover, the ventral pattern distinguishes P. shintai 
sp. nov. from all other species for which this character has 
been described. We used morphometric differences for 
comparisons only as a last resort as sample sizes for the 
majority of the specimens in the type series were small. 
Importantly, although Roszkowska et al. (2020) included 
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P. angelusalas, P. dastychi and P. indistinctus in the suil-
lus-facettalis complex, such combination is phylogeneti-
cally unjustified, as they all exhibit elongated (dactyloid) 
cephalic papillae, which is a distinguishing trait of P. no-
vaezeelandiae (Richters, 1908) (see Pilato et al. 2005) and 
of the entire novaezeelandiae lineage (Cesari et al. 2020).

Genotypic differential diagnosis. p-distances between 
the new species and the remaining Pseudechiniscus spp., 
for which COI sequences are available, ranged between 
18.6% (P. suillus) and 29.3% (P. lacyformis). Intraspecif-
ic distance was equal to 0.2%.

Discussion

The dorsal sculpturing of P. asper is particularly inter-
esting morphologically, as large, roughly circular endo-
cuticular pillars protrude through the epicuticle as isolat-
ed, solid bumps, unconnected by thin ridges – striae. In 
many other Pseudechiniscus species, striae are typical 
elements of the armour (e.g. Pilato et al. 2004, Pilato and 
Lisi 2006). Tumanov (2020) suggested that their presence 
may represent a phylogenetic signal and, as striae are ab-
sent in P. suillus (Grobys et al. 2020), this could mean that 
the absence of striae is a trait specific to the suillus-fac-
ettalis lineage (Cesari et al. 2020). The hypothesis would 
necessitate a comprehensive analysis of the sculpturing 
amongst the entire suite of species.

The recent studies on Pseudechiniscus imply that 
all previous records of putatively cosmopolitan species 
should be questioned and verified to ensure against misi-
dentification (Grobys et al. 2020, Tumanov 2020). This is 
the case for almost all Pseudechiniscus spp. reported from 
Japan: P. suillus, P. bartkei Węglarska, 1962, P. facettalis 
Petersen, 1951, P. pseudoconifer Ramazzotti, 1943 and 
P. ramazzottii Maucci, 1952 (see Suzuki 2017). As the 
Japanese fauna of the four main islands is considered to 
be a part of the Palaearctic with high levels of endemism 
in many animal groups due to the isolation during glacia-
tion periods (Motokawa 2017), it cannot be excluded that 
some of the above-mentioned species inhabit the Japa-
nese archipelago (all but P. bartkei were described from 
the Western Palaearctic and Greenland). To confirm their 
status as native to Japan, re-descriptions must be prepared 
and an enhanced sampling effort is required in Japan.
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