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Abstract

I describe the parasitic barnacle Mycetomorpha abyssalis sp. nov. from the crangonid shrimp Sclerocrangon zenkevitchi collected 
from 3893–3890 m depth off the eastern coast of Iwate, Japan, northwestern Pacific. This is the first Mycetomorpha rhizocephalan 
from the abyssal zone and the third species in Mycetomorpha. Mycetomorpha abyssalis sp. nov. differs from its congeners M. van-
couverensis and M. albatrossi in (1) triangular shield lacking, (2) stalk one-quarter of length from posterior end of externa, (3) 
mantle opening clearly anterior to stalk, (4) different host genus, and (5) depth range much deeper. I determined partial sequences 
for the mitochondrial cytochrome c oxidase subunit I (COI) and 16S rRNA genes and nuclear 18S rRNA and 28S rRNA genes from 
M. abyssalis sp. nov. for future DNA barcoding and phylogeny. Kimura 2-parameter distances between M. abyssalis sp. nov. and 
M. vancouverensis were 21.2% (16S), 0.6% (18S), and 1.5% (28S).
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Introduction

Mycetomorpha Potts, 1912, the sole genus in the rhizo-
cephalan barnacle family Mycetomorphidae, contains 
the two species Mycetomorpha vancouverensis Potts, 
1912 and Mycetomorpha albatrossi Høeg & Rybakov, 
1996 (Høeg and Rybakov 1996). These utilize crangonid 
shrimps as hosts and have been reported only from the 
northern Pacific, at depths shallower than 300 m (Potts 
1912; Butler 1955, 1980; Høeg and Rybakov 1996; Sloan 
et al. 2001; Wheeler and McIntosh 2021; Eibye-Jacob-
sen et al. 2024; GBIF 2024; Orrell and Informatics Office 
2024) (Fig. 1). The two species differ in external morphol-
ogy (Høeg and Rybakov 1996) and utilize host shrimps in 
different genera: Neocrangon communis (Rathbun, 1899) 
for M. vancouverensis; Metacrangon variabilis (Rath-
bun, 1902) and Metacrangon acclivis (Rathbun, 1902) for 
M. albatrossi. Molecular phylogenetic analyses (Høeg et 
al. 2020; Korn et al. 2020) have suggested that Myceto-
morphidae is closely related to the family Peltogastridae.

Here I describe a new Mycetomorpha species based on 
one individual parasitic on the crangonid Sclerocrangon 
zenkevitchi Birshtein & Vinogradov, 1953 from the abyssal 
zone in the Japan Trench, northwestern Pacific. This is the 
first abyssal record for Mycetomorpha. Additionally, I pro-
vide partial sequences for its cytochrome c oxidase subunit 
I (COI), 16S rRNA, 18S rRNA, and 28S rRNA genes for 
DNA barcoding and future phylogenetic analyses.

Methods

The host shrimp Sclerocrangon zenkevitchi (identified by 
Tomoyuki Komai; Natural History Museum and Institute, 
Chiba) was collected with a beam trawl on 29 Septem-
ber 2023 during cruise KH-23-5 of R/V Hakuho-maru 
(Japan Agency for Marine-Earth Science and Tech-
nology; JAMSTEC), at Station F2 (39°28.555'N, 
143°47.347'E to 39°27.934'N, 143°47.240'E), depth 
3893–3890 m. The fresh shrimp was photographed. 
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Pleonite 1 bearing the parasite was removed from the 
body with scissors and placed in a petri dish. Soft tis-
sue from host pleonite 1 was recovered, and fixed and 
preserved in 99% ethanol. The pleonite-1 exoskeleton 
penetrated by the parasite stalk was photographed. The 
parasite and surrounding pleonite-1 exoskeleton were 
removed and photographed. Some lobes of the parasite 
were detached, and fixed and preserved in 99% ethanol. 
The remaining portions of the host and parasite were 
fixed and preserved in 80% ethanol. The fixed parasite 
was observed with a Nikon SMZ1500 stereomicroscope; 
it was not sectioned, in order to retain the option for fu-
ture non-destructive observation. The material examined 
in this study is deposited in the Natural History Museum 
and Institute, Chiba, Japan, catalogued under the acro-
nym CBM-ZC.

The terms for orientation (anterior, posterior, left, right, 
dorsal, ventral) used herein for the parasite’s externa cor-
respond to those for the host (“dorsal” herein corresponds 
to the “upper” or “stalk side” in Høeg and Rybakov 1996). 
Externa length was measured from the anterior to poste-
rior ends, lobes excluded; externa width was measured at 
the widest portion, lobes excluded. The carapace length 
(cl) of the host was measured from the orbital margin to 
the midpoint of the posterodorsal margin of the carapace.

Total DNA was extracted from several lobes of the par-
asite and from pleonal muscle of the host shrimp by using 
a NucleoSpin Tissue XS Kit (Macherey–Nagel, Germa-
ny). For the COI gene, primers LCO1490 and HCO2198 
(Folmer et al. 1994) were used for PCR amplification and 
cycle sequencing (CS). For the 16S gene, primers 16sar-L 
and 16sbr-H (Palumbi et al. 2002) were used for amplifi-
cation and CS. For the 18S gene, primers SR1 and SR12 
(Nakayama et al. 1996) were used for amplification, and 
primers SR3, 18S-b3F, 18S-b4F, 18S-b4R, 18S-a4R, 
18S-b5F, 18S-b6F, 18S-a6R, and 18S-b8F (Nakayama 
et al. 1996; Kakui et al. 2011, 2021; Kakui and Shimada 
2017, 2022; Kakui and Hiruta 2022) for CS. For the 28S 
gene, primers 300F and L1642 (Lockyer et al. 2003) were 
used for amplification, and primers 28S-Rd4.2b, 300F, 
900F, and U1148 (Whiting 2002; Lockyer et al. 2003) for 
CS. Amplification conditions for COI and 16S with TaKa-
Ra Ex Taq DNA polymerase (TaKaRa Bio, Japan) were 

94 °C for 1 min; 35 cycles of 98 °C for 10 s, 50 °C (COI) 
or 42 °C (16S) for 30 s, and 72 °C for 50 s; and 72 °C for 
2 min. Conditions for 18S and 28S with KOD FX Neo 
(Toyobo, Japan) were 94 °C for 2 min; 45 cycles of 98 °C 
for 10 s, 65 °C (18S) or 52 °C (28S) for 30 s, and 68 °C 
for 75 s; and 68 °C for 3 min. All nucleotide sequences 
were determined with a BigDye Terminator Kit ver. 3.1 
and 3730 DNA Analyzer (Life Technologies, USA). Frag-
ments were concatenated by using MEGA7 (Kumar et al. 
2016). The sequences determined in this study were de-
posited in the International Nucleotide Sequence Database 
(INSD) through the DNA Data Bank of Japan (DDBJ).

The 16S, 18S, and 28S sequences from the new spe-
cies were aligned individually with homologs from 
M. vancouverensis (16S, 534 bp, MH974513; 18S, 
1757 bp, MH974514; 28S, 682 bp, MH974515; Høeg et 
al. 2019) by using MUSCLE (Edgar 2004) and trimmed 
to the shortest length between them (16S, 494 bp; 18S, 
1757 bp; 28S, 683 bp) after alignment. Kimura’s (1980) 
2-parameter (K2P) distance between the two species was 
calculated with MEGA7 for each gene.

Taxonomy

Family Mycetomorphidae Høeg & Rybakov, 1992
New Japanese name: ミノフクロムシ科 (Mino-fukuromushi-ka)

Genus Mycetomorpha Potts, 1912
New Japanese name: ミノフクロムシ属 (Mino-fukuromushi-zoku)

Mycetomorpha abyssalis sp. nov.
https://zoobank.org/9C0FBC4F-5779-4100-BDC9-8D585C1A4160
Figs 2–4
New Japanese name: メイフノミノフクロムシ (Meifu-no-mino-fuku-
romushi)

Etymology. The specific name abyssalis (Latin: abyssal) 
is an adjective referring to the collection of this species 
from an abyssal depth.

Type host. Sclerocrangon zenkevitchi Birshtein & Vi-
nogradov, 1953 (Decapoda: Caridea: Crangonidae).

Figure 1. Map showing the global distribution of Mycetomorpha. Bathymetric contour intervals are 1000 m, with 
thicker contour lines every 2000 m. The map and plots were generated with GMT6 software (Wessel et al. 2019) based 
on data publicly available from ETOPO1 (Amante and Eakins 2009; NOAA National Geophysical Data Center 2009).

http://www.ncbi.nlm.nih.gov/nuccore/MH974513
http://www.ncbi.nlm.nih.gov/nuccore/MH974514
http://www.ncbi.nlm.nih.gov/nuccore/MH974515
https://zoobank.org/9C0FBC4F-5779-4100-BDC9-8D585C1A4160
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Attachment site. Pleonite 1 sternite.
Type locality. Off the eastern coast of Iwate, Japan, 

northwestern Pacific (39°28.555'N, 143°47.347'E to 
39°27.934'N, 143°47.240'E), depth 3893–3890 m.

Material examined. Holotype, female (CBM-ZC 
17789), one vial, ex. S. zenkevitchi (cl 26.7 mm; CBM-
ZC 17788), collected on 29 September 2023 at the type 

locality, R/V Hakuho-maru cruise KH-23-5, coll. by 
Keiichi Kakui.

Representative DNA sequences. One sequence each 
was determined from the holotype (CBM-ZC 17789) 
for COI (INSD accession number LC799150; 637 bp, en-
coding 212 amino acids), 16S (LC799151; 490 bp), 18S 
(LC799152; 1826 bp), and 28S (LC799153; 1169 bp). 

Figure 2. Mycetomorpha abyssalis sp. nov., holotype, attached to the host, Sclerocrangon zenkevitchi Birshtein & 
Vinogradov, 1953, fresh specimen. Scale bar: 10 mm.

Figure 3. Mycetomorpha abyssalis sp. nov., holotype, fresh specimen. A. Habitus, parasitic on the host, ventral view; 
B, C. Habitus, ventral (B) and dorsal (C) views; ant – anterior; lef – left; man – mantle opening; rig – right; pos – 
posterior; sta – stalk; tub – tubular lobe. Scale bars: 10 mm.
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One sequence each was determined from the host (CBM-
ZC 17788) for COI (LC799154; 658 bp, encoding 219 
amino acids) and 18S (LC799155; 1846 bp).

Description of female holotype. Externa (Figs 2, 3) 
16.6 mm in length, thinner than broad, a little over twice 
as long as maximum width (8.1 mm), rounded at ends, 
pale yellow (faded in ethanol, slightly yellowish); except 
dorsal and anteroventral regions, externa surface covered 
with short lobes; filled with developing embryos. Root 
system not observed. Stalk short, cylindrical, at one-quar-
ter of length from posterior end of externa. Triangular 
shield lacking (Figs 3C, 4). Anterior, middle, and ventral 
lobes short, and ovoid or digitiform; posterior lobes short 
and branched. Tubular lobe anterior to stalk, at one-fifth 
of length from anterior end of externa, arising from right 
margin of externa, with mantle opening at tip; mantle 
opening anterior to stalk.

Distribution. Presently known only from the type lo-
cality.

Discussion

Mycetomorpha abyssalis sp. nov. is the third species de-
scribed in this genus. The three congeners are morpho-
logically similar to one another, but M. abyssalis sp. nov. 
differs from the others in (1) lacking a triangular shield 
(present in M. vancouverensis), (2) the location of the 
stalk at one-quarter the length from the posterior end of 
the externa (one-third in M. albatrossi), and (3) the man-
tle opening clearly anterior to the stalk (to the right of the 
stalk in M. vancouverensis; slightly anterior to the stalk 
in M. albatrossi) (Potts 1912; Høeg and Rybakov 1996). 
However, because the shape of the externa can vary onto-
genetically (e.g., the size of externa, the distribution and 

size of lobes; cf. Høeg and Rybakov 1996: fig. 1), these 
morphological differences should be treated with caution.

The genus of host shrimps is different among three 
species: M. vancouverensis, M. albatrossi, and M. abys-
salis sp. nov. utilize the crangonid genera Neocrangon, 
Metacrangon, and Sclerocrangon, respectively. The depth 
range of 3893–3890 m recorded for M. abyssalis sp. nov. 
is far deeper than for the others (240 m or shallower for 
M. vancouverensis; 291 m or shallower for M. albatrossi; 
Høeg and Rybakov 1996; Wheeler and McIntosh 2021). 
The known depth range for S. zenkevitchi (2995–4070 m; 
Komai and Komatsu 2009) does not overlap those for 
N. communis (16–1537 m; Komai and Komatsu 2009), 
M. variabilis (92–1271 m; Komai 2012), and M. accliv-
is (146.3–486.5 m; Rathbun 1902). These differences in 
host group and vertical distribution of parasites and hosts 
support the conclusion that the specimen from Japan is not 
conspecific with either M. vancouverensis or M. albatrossi.

I determined COI, 16S, 18S, and 28S sequences of 
M. abyssalis sp. nov., and sequences for the last three 
genes were available for M. vancouverensis. K2P dis-
tances between two species were 21.2% (16S), 0.6% 
(18S), and 1.5% (28S). Noever et al. (2016) found K2P 
distances for 16S between two Briarosaccus species 
(Rhizocephala, Peltogastridae) in the range of 4.3–4.6%, 
suggesting the above difference in 16S may correspond 
to interspecific variation. In a BLAST search (Altschul et 
al. 1990), the COI sequence most similar to my sequence 
was from the insect Rhodopsalta cruentata (Fabricius, 
1775) (MZ470333; identity score 73.85%, query cover 
100%; Bator et al. 2021), a misleading result likely due 
to the lack of any congeneric COI sequences in INSD (cf. 
Kakui and Hiruta 2022). A BLAST search with the “Or-
ganism” option set to “Rhizocephala” selected Sacculi-
na granifera Boschma, 1973 (DQ059779; identity score 
72.64%, query cover 98%; Gurney et al. 2006) as the 
most similar sequence, but again the identity score was 
low. If congeneric sequences become available, COI se-
quences, which seem to evolve faster than 16S sequences 
(cf. Noever et al. 2016; Jung et al. 2021), will likely be a 
useful tool for Mycetomorpha taxonomy.
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